PUBLICATIONS

DF

L'OBSERVATOIRE ASTRONOMIQUE DE L'UNIVERSITÉ DE TARTU (DORPAT)

TOME XXVI № 2

Stellar Distribution and The Law of Chance

with a special discussion of the Paris Carte-du-Ciel Zone $\phi = +24^{\circ}$

By

E. Öpik

Aided By

Miss M. Lukk

Tartu 1924

Abbreviations used:

- T. P. = Publications de l'Observatoire Astronomique de l'Université de Tartu (Dorpat)
- G. P. = Publications of the Astronomical Laboratory at Groningen

K. Mattiesen'i trükk, Tartus.

1. Introduction.

The following contains a study of the irregularity of stellar distribution, discussed from the standpoint of the theory of probabilities. The general character of the galactic phenomenon, i. e. in what concerns the variation of stellar number with galactic latitude, may now be regarded as established with sufficient precision through the researches made at Groningen and other observatories; an investigation of the deviations from the smooth curves representing the effect of galactic latitude may form a second step in studying the structure of our universe. One of the possible deviations, a supposed regular dependence upon the galactic longitude, will not be considered here; we shall confine ourselves only to a discussion of local deviations and irregularities.

The irregularity of stellar distribution in the Milky Way, where star-clouds are contrasted by coal-sacks almost devoid of stars, is well known; the men who contributed the most to the knowledge of these irregularities since the time of W. Herschel were E. E. Barnard and Max Wolf; generally, however, relatively little attention was paid to the phenomenon. In most cases only the descriptive method of investigation was applied, the observer's impression from visual observation or from a photographic plate being the only criterion. Under such circumstances it is not surprising that the majority of the dark markings of Barnard's list 1) are near the Milky Way: "Their apparent preference for the bright regions of the Milky Way is obviously due to the fact that they are more readily shown with a bright background" 2).

¹⁾ Astrophysical Journal, 49 (1919), pp 14-17.

²⁾ E. E. Barnard, *ibidem* p. 12. Of course, a real concentration of dark nebulae towards the Milky Way seems to exist, though in a much less degree than shown by the objects of Barnard's list.

Analytical methods of investigation seem to point at an irregularity of stellar distribution also outside the Milky Way, an irregularity which cannot be accounted for by accidental deviations; from a discussion of stellar distribution in the B. D. and in the C. P. D. W. Stratonoff arrived at the discovery of starclouds into which appear crowded the brighter stars, represented by these catalogues 1); the well-known Taurus region of extended obscuration was recently studied by F. W. Dyson and P. J. Melotte 2), and subsequently discussed by A. Pannekoek 3). H. H. Turner has suggested the existence of a "spiral of obscuration" extending over the whole sky 4).

There may be two causes accounting for the observed irregularities, or for the areas devoid of stars: a) real variations of stellar density in space, i. e. real vacancies, holes or clusters of stars; were this the only cause, its importance in the study of stellar distribution would not be very great, since in this case the shape and dimensions of the *schematical* universe need not be altered; b) absorption of light by dark cosmic clouds; this factor is of fundamental importance, as the concluded dimensions and stardensity of our universe depend directly upon the assumption as to the amount of absorption of light in space.

Probably both causes affect the apparent distribution of stars; absorption of light seems, however, to be by far the more conspicuous of the two.

There is a piece of work, undertaken by father J. G. Hagen at the Vatican Observatory, which does not deal directly with stellar distribution, but the purpose of which is in near relationship with our present investigation: this is the "Durchmusterung of the Heavens for Obscure Cosmic Clouds" 5); in this Durchmusterung the density of obscure nebulae as observed in the field of a 16-inch refractor is estimated in a certain arbitrary scale; from the description the physical meaning of this scale is not quite certain, but in some way the estimates must be related to the integrated light of stars fainter than the limiting

¹⁾ Etudes sur la structure de l'Univers. Publ. de l'Obs. de Tachkent № 2, 3.

²⁾ Monthly Notices, 80 (1919), pp. 3-7.

³⁾ The Distance of the Dark Nebulae in Taurus etc. Amsterdam, 1920.

⁴⁾ Monthly Notices, 75. 465; 76, 149 (1915).

⁵⁾ Atti d. Pontificia Accad. Romana, 1922 and 1923; Specola Astronomica Vaticana X.

magnitude of the 16-inch refractor; probably only stars of magnitude 17 and fainter are affecting the estimates, brighter stars although invisible in the telescope being too far apart to produce a continuous background; since all star-counts refer to brighter stars, the results derived from the former are not directly comparable with the results of Hagen's Durchmusterung. other hand, the interpretation which Hagen gives to his observations is, maybe, too categorical; he pretends to see directly the dark clouds, neglecting the two alternatives of explanation mentioned above; this accounts, probably, for the circumstance that Hagen believes the dark nebulae to be crowded around the galactic poles; the low luminosity of the background of the sky near the galactic poles, hitherto attributed to a real (perspective) scarcity of stars in this direction, he apparently ascribes to a more powerful absorption. The methods of observation and the conclusions arrived at by father Hagen were criticized by K. Lundmark 1), and in certain points this criticism may be regarded as valid. In any case a confirmation of Hagen's results by some kind of photometric measures must be awaited before any conclusions can be drawn.

It may be added that a useful bibliography relating to star-counts and stellar distribution is given by H. Nort²).

The star-counts discussed below were made by Miss M. Lukk. Mr. A. Pohla repeated the counts for a few of the charts; Mr. P. Simberg and Mr. R. Livländer assisted in the preparation of the results for press.

2. Theory and Arrangement of Star-Counts.

The Paris Carte-du-Ciel Zone at $\delta = +24^{\circ}$, a complete copy of which our observatory possesses, was chosen as a sample object for discussion; for purposes of absolute stellar counts the Carte-du-Ciel charts are somewhat inconvenient on account of their non-homogeneity; but since our chief task will consist in comparing the density at different points of a very limited area of the sky, covered by a single chart, in our case the non-homogeneity of the series is of no consequence. From the standpoint of counting the Carte-du-Ciel presents the advantage that the triple

¹⁾ Publ. of the Astr. Soc. of the Pacific, № 200 (1922).

²⁾ Recherches Astronomiques de l'Obs. D'Utrecht VII (1917).

exposures facilitate the discrimination between stars and defects of the plate.

Counted were stars on each chart within squares of $10' \times 10'$, corresponding to 4 squares of the *réseau*; the region outside the *réseau* was neglected; when the total number of stars on a chart approached or surpassed 4000, the chart was divided into 4 quadrants, each of which was treated independently, and stars were counted within *each* square of the *réseau*. In this way on each chart or on each quadrant of the rich charts stars were counted in 169 areas. The results of the counts, together with a special explanation, are given in table I at the end of this discussion. No subdivision according to classes of stellar magnitude was attempted.

Let N be the total number of stars counted on a chart 1), ν — the number of equal areas into which the chart was subdivided ($\nu = 169$), $p = \frac{1}{\nu}$, r — the number of stars within one area (square), or the density of stars, π — the probability, and n = n(r) — the average frequency of the density r; we have

$$\pi = \frac{N!}{r!(N-r)!} p^{r}(1-p)^{N-r} \dots (1)$$

and

$$n=\nu\pi$$
 . . (2);

these formulae furnish the theoretical distribution of the densities, and may be compared with the observed distribution. With the aid of formulae (1) and (2) table 1 was computed with $\nu = \frac{1}{p} = 169$; for this purpose the following approximate formula was used:

$$\log n = r \log N - \log r! + (r-1) \log p + (N-r) \log (1-p) - -0.217 \frac{r(r-1)}{N} \dots (3).$$

It may be remarked that the densities r are too small to allow of substituting, instead of (1), a Gaussian.

If the chart is regarded as a part of an infinite area, having an average star -density ϱ , whereas the number N on a chart is

¹⁾ Not identical with the number given by the Paris authority.

subject to accidental variation, a somewhat different formula for π will be obtained:

 $\pi = \frac{\varrho^r}{r!} e^{-\varrho} \dots$ (1'). As the true density is unknown, we may assume as its most probable value $\varrho = \frac{N}{\nu}$. The difference between (1) and (1') is, however, too small to be of practical value, and in the following formula (1) was used.

With r = 0, formulae (1) or (1') become

$$\pi_0 = (1 - p)^N$$
, or $\pi_0 = e^{-\varrho}$.

The data of table 1 were not used directly, but the n(r) for each r were plotted with the N as abscissae and smooth curves drawn; the theoretical values of n(r) given in table I were read from these curves.

Table 1.

Theoretical frequency n(r) of the density r. v = 169.

	1					77				
r						N	•			
,	200	3 00	400	500	600	700	800	900	1000	1200
	<u>. </u>		<u> </u>			<u> </u>			· · · · · · · · · · · · · · · · · · ·	
0	51.5	28.5	15.7	8.7	4.8	2.7	1.5	0.8	0.4	0.1
1	61.4	50.9	37.5	25.9	17.2	11.1	7.0	4.3	2.7	1.0
2	36.3	45.3	44.5	38.4	30.6	23.0	16.6	11.6	7.9	3 .5
3	14.3	26.8	35.2	37.9	36.3	31.8	26.2	20.7	15.7	8.3
4	4.2	11.8	20.8	28.0	32.3	33. 0	31.1	27.5	23.2	14.7
5	1.0	4.2	9.8	16.6	22.9	27.4	29.5	29.4	27.6	20.9
2 3 4 5 6 7 8 9	0.2	1.2	3 .8	8.2	13.5	18.9	23.3	26.1	27.3	24.8
7	0.03	0.3	1.3	3.4	6.8	11.2	15.8	19.9	23.1	25.2
8	0.004	0.07	0.4	1.3	3.0	5.8	9.3	13.2	17.0	22.4
9	0.0006	0.01	0.1	0.4	1.2	2.6	4.9	7.8	11.2	17.7
10	<u> </u>	0.002	0.02	0.1	0.4	1.1	2.3	4.1	6.6	12.5
11	<u> </u>	0.0003	0.005	0.03	0.1	0.4	1.0	2.0	3.5	8.0
12	_	5.10^{-5}	0.0009	0.007	0.04	0.1	0.4	0.9	1.7	4.8
13		-		0.002	0.01	0.04	0.1	0.4	0.8	2.6
14	_		<u> </u>	0.0004	0.003	0.01	0.05	0.1	0.3	1.3
15	_			7.10-5	0.0006	0.003	0.01	0. C5	0.1	0.6
16	l —						0.004	0.02	0.05	0.3
17	l —	—					0.001	0.005	0.02	0.1
18	—							0.001	0.005	0.04
19	i —							0.0004	0.002	0.02
20	l —									0.006
21			_	_	_	_				0.002
22		<u> </u>								0.0006
Sum	168.9	169.1	169.1	168.9	169.2	169.2	169.1	168.9	169.2	168.9

Table 1. Continued.

					\overline{N}		<u> </u>		
r	1400	1600	1800	2000	2400	2800	3200	3 600	4000
. 0	0.04	0.01	0.004	0.001	0.0001	10-5			
1	0.04	0.1	0.004	0.01	0.0001	0.0002	2.10^{-5}		
9	1.4	0.6	0.2	0.01	0.001	0.002	0.0002	2.10-5	
· 2	4.0	1.8	0.8	0.3	0.05	0.001	0.0001	0.0001	2.10^{-5}
4	8.3	4.3	2.1	1.0	0.00	0.03	0.005	0.0001	0.0001
4 5	13.9	8.3	4.5	2.3	0.5	0.03	0.02	0.003	0.0005
$\overset{o}{6}$	19.2	13.1	8.1	4.6	1.3	0.3	0.06	0.01	0.002
7	22.8	17.7	12.4	7.9	2.6	0.7	0.2	0.04	0.007
8	23.6	20.9	16.5	11.7	4.7	1.5	0.4	0.1	0.02
$\check{9}$	21.7	22.0	19.5	15.4	7.4	2.8	0.9	0.2	0.06
10	18.0	20.9	20.9	18.2	10.5	4.6	1.6	0.5	0.1
11	13.5	18.0	20.1	19.6	13.6	7.0	2.8	1.0	0.3
12	9.3	14.2	18.0	19.4	16.2	9.6	4.5	1.7	0.6
13	5.9	10.3	14.7	17.6	18.1	12.3	6.5	2.8	1.0
14	3. 5	7.0	11.1	14.9	18.0	14.5	8.8	4.3	1.8
15	1.9	4.4	7.9	11.8	17.1	16.1	11.2	6.1	2.8
16	1.0	2.6	5.2	8.6	15.1	16.7	13.2	8.1	4.1
17	0.5	1.4	3.3	6.0	12.6	16.3	14.8	10.2	5.7
18	0.2	0.8	1.9	4.0	9.9	14.9	15.5	12.1	7.5
19	0.1	0.4	1.1	2.5	7.4	13.0	15.4	13.6	9.4
20	0.04	0.2	0.6	1.4	5.2	10.8	14.6	14.5	11.1 12.6
21	0.02	0.08	0.3	0.8	3.5	8.5	13.2	14.7	12.6
22	0.006	0.03	0.1	0.4	2.3	6.4	11.3	14.2	13.5
23	0.002	0.01	0.06	0.2	1.4	4.6	9.3	13.2	13.9
24	0.0007	0.005	0.03	0.1	0.8	3.2	7.4	11.7	13.7
25	_	0.002	0.01	. 0.05	0.5	2.1	5.6	9.9	13.0
26	_		$0.005 \\ 0.002$	0.02	0.2	1.3	4.0	8.1 6.4	11.8
27	_		0.002	0.01	0.1	0.8	2.8 1.9	4.9	10. 4 8.8
$\begin{array}{c} 28 \\ 29 \end{array}$			0.0007	0.004	0.07	0.3	1.9	3.6	7.1
30				0.0007	0.03	0.3	0.8	$\begin{array}{c} 3.0 \\ 2.5 \end{array}$	5.6
30 31				0.0001	0.007	0.08	0.5	1.7	4.3
32				_	0.003	0.04	0.3	1.2	3.2
33					0.000	0.02	0.2	0.7	$\frac{0.2}{2.3}$
34						0.01	0.09	0.5	1.6
35				_		0.005	0.05	0.3	1.1
3 6	_					_		0.2	0.7
37	_							0.1	0.4
38	· —							0.05	0.3
Sum	169.3	169.1	169.4	168.9	169.4	169.3	169.1	169.2	168.8

It is easy to show that almost all factors systematically influencing the observed stellar distribution, as absorption, clustering, non-uniform sensitiveness of the plate, etc, will result in producing a positive excess, i. e. the observed frequency of small or great densities will be greater than the theoretical frequency, whereas intermediate densities will be less frequent: the effect of each of the factors mentioned above may be represented as a super-

position of two or more curves (error-curves) like those given in table 1. In fact only about $\frac{1}{3}$ of the charts examined showed no sensible positive excess; about $20^{\circ}/_{0}$ had a positive excess of such a size that the chances for accidental configuration producing it were less than $1:100\,000$.

The following examples may serve as an illustration, how deviations from the law of chance will influence the distribution of densities.

a. Effect of the distance from the centre. It is well known that the limiting magnitude of a photograph, and, therefore, the stellar density

varies with the distance from the centre of the plate. To investigate this phenomenon, the sum of the numbers of stars counted in each of the squares $a, b, c, \ldots q,$ $b', \ldots q'$ (fig. 1) was taken; fig. 1 represents the scheme of chart. the squares equalling $10' \times 10'$; the squares b

Fig. 1.

and b', c and c' etc are located symmetrically, so that by taking the sum b+b', c+c' etc an effect of unsymmetry of the field is eliminated. Table 2 represents the effect of the distance from the centre. The 12 richest charts which were divided into 4 quadrants were not used in deriving this table. The first column of the table gives the square according to the denotation of fig. 1; square a has been doubled, to make the number comparable with the pairs of other squares; the next column contains the distance from the centre in minutes of arc; the 3^a column gives the total number of stars counted on the 168 charts

Table 2.

Square	Distance	Number	Rel. Area	Mean Rel. Number (density)	Lim. Magn.
$a+a \\ b+b' \\ c+c' \\ d+d' \\ e+e' \\ f+f' \\ g+g' \\ k+k' \\ l+l' \\ m+m' \\ n+n' \\ p+p' \\ q+q'$	0'.0 10.0 20.0 30.0 40.0 50.0 60.0 60.8 63.2 67.1 72.1 78.1 84.8	1820 1770 1917 2190 2338 2489 2160 2058 2037 1965 1871 1728 1463	$\left\{\begin{array}{c} 1 \\ 8 \\ 12 \\ 20 \\ 28 \\ 28 \\ \end{array}\right\}$	$\left.\begin{array}{c} 0.856 \\ 0.833 \\ 0.902 \\ 1.031 \\ 1.100 \\ 1.171 \\ \end{array}\right\}$ $\left.\begin{array}{c} 0.981 \\ 0.873 \\ 0.688 \end{array}\right.$	$\begin{array}{c} -0.23 \\ -0.26 \\ -0.13 \\ +0.03 \\ +0.13 \\ +0.23 \\ -0.03 \\ -0.19 \\ -0.52 \end{array}$
Sum Mean	<u> </u>	 2125	169	1.000	0.00

within the corresponding

squares; the 4th columngives the area on the chart having the same effective disthe tance as corresponding square, the unit of area equalling 100 sq. minutes; the 5th column gives the relative density expressed in units of the average

density of the chart; the last column represents the deviation of the limiting magnitude from the effective limiting magnitude of the whole chart, the latter being near 14.5 in the Harvard scale; the data of the last column were derived with the aid of table IV of G. P. 27.

The distribution of density, given in the 5th column of table 2, may be substituted, with an approximation sufficient for our purposes, by the following schematized distribution:

<u>1</u> .	of	the	area	with	a	mean	density	0.865;
1/3			. 27			"		1.000;
<u>1</u>			"			"		1.100;
1			••					1.167.

Assuming these figures, and using table 1, we can calculate the effect of the non-uniformity of the plate upon the distribution of densities: it is sufficient to superpose the curves n(r) corresponding to values of N proportional to the mean density, the component curves being multiplied by their relative areas. In this way for 3 selected values of N (total number per chart) the computation was executed.

1)
$$N=300$$
.

Component curves: $N=260$; 300 ; 330 ; 350

area = $\frac{1}{3}$; $\frac{1}{3}$; $\frac{1}{6}$; $\frac{1}{6}$.

 $r=$

0 1 2 3 4 5 6 7

resulting distribution 28.7 50.9 44.4 26.8 12.0 4.3 1.3 0.3 theoretical distrib. 28.5 50.9 45.3 26.8 11.8 4.2 1.2 0.3 Difference $+0.2$ 0.0 -0.9 0.0 $+0.2$ $+0.1$ $+0.1$ 0.0

2) $N=1000$.

 $r=$

0 1 2 3 4 5 6 7 8 resulting distrib. 0.5 3.1 8.5 16.3 23.1 27.0 26.2 22.3 16.3 theor. distrib. 0.4 2.7 7.9 15.7 23.2 27.6 27.3 23.1 17.0 difference $+0.1$ $+0.4$ $+0.6$ $+0.6$ -0.1 -0.6 -1.1 -0.8 -0.7
 $N=1000$. Continued.

 $r=$

9 10 11 12 13 resulting distrib. 11.2 6.9 3.8 2.0 1.0 theor. distrib. 11.2 6.6 3.5 1.7 0.8 difference -0.0

$\mathbf{r} =$	10	13	16	20	23	26	28
resulting distrib.	2.3	7. 3	12.7	13.1	8.9	4.5	2.6
theor. distrib.	1.6	6.5	13.2	14.6	9.3	4. 0	1.9
difference	+0.7	+0.8	-0.5	-1.5	-0.4	+0.5	+0.7

From the above figures it may be inferred that the non-uniformity of the photographs produces a very slight, almost negligible deviation from the theoretical chance distribution.

b) Errors of observation (counting).

In counting stars in a region of the sky, on a photograph or a photographically reproduced chart, the brighter stars, up to a certain limit, are recorded completely, whereas of the faintest objects only a fraction can be recorded. The total number, r, counted within a limited region, may be represented as the sum of two numbers,

$$r=r_1+r_2,$$

 r_1 being the number of objects which can be recorded completely, r_2 — the number recorded among the uncompletely observed

group (the latter is always greater than r_2); for a given region r_1 is constant, whereas r_2 is subject to accidental variation. The probable error of the total number r is thus given by the well-known formula

p. e.
$$(r) = \pm 0.674 \ V \overline{r_2}$$
.

Let us put $r_2 = kr$; we have

p. e.
$$(r) = \pm 0.674 \ \sqrt{kr} \ \dots \ (4)$$
.

The factor k represents the fraction of r subject to accidental variation; as in some way this quantity must be related to the number of faint stars, some dependence upon the galactic latitude appeared probable, which dependence was, however, neglected.

The counts were made at daylight; charts denoted by uneven numbers were counted in June-August, those with even numbers — in October-November, 1923; the character of illumination was doubtlessly different for these two series of counts, but no perceptible difference was revealed by the result; the mean effective limiting magnitude, in the scale of G. P. 27, table IV, determined as will be explained below, came out as

 14.55 ± 0.03 for the uneven charts, and 14.53 ± 0.03 for the even charts.

The agreement of the counted number with the number given by the Paris authority was generally good; the total number counted here was 254 607, the sum of the numbers printed at the head of each chart — 261 797; this gives a ratio of count: Paris = 0.973. However, after rejecting 12 charts mentioned in table 3, where the Paris number appears somewhat doubtful, the numbers become 247 108 and 247 293 respectively, giving a ratio 0.999.

An abnormal discrepancy presented 12 charts, particulars of which are given in the following table.

Table 3.

Charts for which the counted number differed considerably from the Paris number.

```
No Paris Count | 6 | 13 | 27 | 65 | 66 | 81 | 88 | 99 | 129 | 131 | 132 | 134 | All | N Paris Count | 1291 | 905 | 1604 | 1504 | 1705 | 1155 | 1558 | 358 | 1038 | 1074 | 1189 | 1123 | 14504 | 1180 | 1554 | 651 | 873 | 818 | 862 | 509 | 461 | 214 | 677 | 658 | 635 | 587 | 7499 | 13.79 | 14.76 | 14.51 | 14.52 | 14.58 | 15.14 | 14.65 | 13.64 | 13.93 | 14.23 | 13.85 | 13.90 | 14.27 | 14.27 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28 | 14.28
```

In the line of remarks "+" means that the copy apparently approaches the normal conditions, as judged from the limiting magnitude attained in the count, and "—" means that the limiting magnitude of the count is considerably below the average.

The source of the discrepancy may be sought in the process of printing, through which some delicate details of the plate may have been lost. From the following considerations this explanation appears, however, not convincing. For the 12 exceptional charts the average limiting magnitude of the count equals 14.27 ± 0.10 , the limiting magnitude corresponding with the Paris number is 15.19, whereas the average of all 180 charts is 14.54; thus the numbers counted on the charts answer much better the average conditions than the Paris numbers. If anything is exceptional with these 12 charts, it is the Paris numbers which present the exception, whereas our counts are in all appearences all right.

To investigate the personal errors of counting, 12 selected charts were counted independently by Mr. A. Pohla in December, 1923. Tables 4—6 contain a summary of the comparison of the counts made by Miss Lukk and Mr. Pohla.

Table 4.

Ch	o m t	10	99	971	20	52^{2})	911\	0010	07	100	1291\	1/9	160
OII		19	ت	(- 1 - 1	49	04-7	01-)	00-)	91	100	134-)	144	100
1	$\stackrel{L.}{P}$.	1734	764	873	2135	4043	509	461	231	389	635	34 26	1235
						36 88							
	Paris	1685	779	(1604)	2340	3670	(1155)	(1558)	241	356	(1189)	2880	1381
						0.91							

From table 4 it follows that P. counted on the average a smaller number of stars than L.; there is only one exception — chart 29. The average ratio P: L results as 0.89; without the peculiar charts 29 and 52, the ratio becomes 0.88.

In tables 5 and 6 Δ_0 is the mean value of Δ ; $1-\Delta_0$: r equals the ratio P:L for the particular value of r; there is no systematic change with r in this ratio. The factor k represents the coefficient of formula (4), computed from formulae (5).

¹⁾ Vide table 3.

²⁾ Counted by quadrants and by squares $5' \times 5'$.

Table 5. Distribution of differences $\Delta = P.-L$.
All charts except 29 and 52.

	-33		4	-	87	4	2	က	4	4	_	0	0	0	0	0	12	4.3	0.11	0.86
	-28 29-		7	0	0	2	2			2	0	0	0	0	0	0	16	3.6	0	
	-24 25-		2				67	5	2	~	_		_	_	_					
	21—2						64	a()		က	10	+-4	0	0	0	0	33	-2.2	0.0	0.90
	8—20		0	-	03	4	4	5	2	9	5	_	-	<u></u>	0	0	31	-2.5	90.0	0.87
	6,17		0	0	_	က	2	27	2	2	00	0	_	0	0	0	27	-1.8	90.0	0.89
	14,15 16,17 18-20 21		0	П	_	0	က	9	<u>∞</u>	2	2	-			0	.0	36	-1.7	0.08	
0,	13 14		0	0	_	0	_	က	2	<u>∞</u>	2	2	0	23	0	0	27	1.1	0.08	
10′×10			=	0	-	0	_	9	2	01	<u>∞</u>		0	0	0	0	33			
	12		0	0	0	_	က	2	က	7	2	23	0		0	_		5 -1.7	60.0	
square	11		_					·		-			_				35	-1.5	0.04	
ಡ	10	P	0	0	0	-	വ	J.	13	14	14	1	0	0		0	20	-1.34	0.05	0.87
by L, within	6	y of	0	0	0	0	က	9	4	15	18	4	0	0	0	0	20	0.98^{-1}	0.04	0.89
L, V		Frequency	0	0	0	0	-	4	14	1 8	<u>∞</u>		0	0	0	0	99			
	%	Frequ							-		67						9	-0.95	0.01	0.88
counted	7		T	0	03	0	01	4	12	18	38	9	0	-	0	1	84	-0.71	0.12	0.00
	9		T	T	0	0	0	4	14	33	45	2	_	0	0	0	102	-0.65	0.02	0.89
= number			T	1		0		က	24	53	83	4		0		0	170	_		
r = 1	5			•					04		~							-0.61	0.03	0.88
	4		l	l	1	1	0	67	17	55	86	∞	-	0	0	0	172	-0.49	0.02	0.88
	3		1	-	1	ī	1	-	10	82	120	03	0	0	_	0	219	0.47	0.05	0.84
			_			-1			<u>∞</u>	48	[4]	· •	0	0	_	0	-			
	2					, '			•	ক	14						21	-0.24	0.0	0.88
	1		-	1	1	1	1	1	1	တ္ထ	159	9	67	0	0	0	197	-0.10	F0.05	0.00
	0		1	-		I	1	ı	1	1	66	87	0	0	0	0	101	+0.0+	:	•
			φ	L-7	9-	-5	-4	<u>-</u> ء	<u>ئ</u>	-1	0-	-	બ	က္	4	-5	(m)	'	,	0:r
		P	\/ 	ı	.	. 1	ı	l	1	!	1	+	+	+	+	> +2	S (Sum)	D	2 2	<i>P</i> -1
S l	l	ı												•			1			-

Table 6.

Distribution of differences $\Delta = P.-L$.

Chart 52.

			r	= nun	iber c	ounted	by L .	withi	n a sq	uare	$5' \times 5'$,		
	0	1	2	3	4	5	6	7	8	9	10	11 12	13 14	15
Δ						I	reque	ncy of	4					
$ \begin{array}{r} -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ +1 \\ +2 \end{array} $		- - 0 11 0		 0 2 27 45 1		0 0 1 8 30 57 5	0 1 1 10 33 48 4	0 0 1 8 21 36 6	0 0 3 8 26 26	0 0 4 5 16 21 4	0 0 0 6 8 11 2	0 0 0 0 2 3 1 6 1 4 4 1 1 0 0	$egin{bmatrix} 0 & 1 \ 1 & 0 \ 0 & 0 \ 3 & 0 \ 2 & 1 \ 2 & 2 \ 0 & 0 \ 0 \ \end{bmatrix}$	0 0 0 1
S (Sum)	2		39	75	90	104	97	72	70	50	27	15 9	8 4	1
$\stackrel{{\it \Delta}_0}{\stackrel{k}{k}} = 1-{\it \Delta}_0: r$	0.0	1.0	$ \begin{array}{c} -0.23 \\ 0.03 \\ 0.89 \end{array} $	$ \begin{array}{c c} -0.40 \\ 0.01 \\ 0.87 \end{array} $	$ \begin{array}{c} -0.36 \\ 0.02 \\ 0.91 \end{array} $	$ \begin{array}{c} -0.36 \\ 0.03 \\ 0.93 \end{array} $	$ \begin{array}{c c} -0.58 \\ 0.03 \\ 0.90 \end{array} $	$ \begin{array}{r} -0.47 \\ 0.01 \\ 0.93 \end{array} $	$ \begin{array}{c c} -0.61 \\ 0.02 \\ 0.92 \end{array} $	-0.68 0.02 0.92	-0.67 0.00 0.93		0.04 0.91	
											,			

$$k = \frac{1}{2r} \left[\frac{\Sigma (\Delta - \Delta_0)^2}{S - 1} - 0.12 \ r \right] \dots \text{ for table 5, and}$$

$$k = \frac{1}{2r} \left[\frac{\Sigma (\Delta - \Delta_0)^2}{S - 1} - 0.09 \ r \right] \dots \text{ for table 6}$$

$$(5);$$

the denotations are those of the preceding tables.

These formulae were derived on the assumption that the accidental errors of counting were equal for both observers; the systematic difference of the observers introduces an accidental error with a mean square deviation equal to

$$+\sqrt{(1-P:L)r};$$

taking into account formula (4), the *total* mean square deviation of the difference P.-L. becomes

$$\sqrt{\frac{\Sigma (\Delta - \Delta_0)^2}{S-1}} = \sqrt{[2k + (1-P:L)]r};$$

substituting for P:L the values 0.88 (table 5) or 0.91 (table 6), formulae (5) can be obtained.

The quantity k represents the fraction of stellar number which is subject to accidental variation during the count made by one observer; in table 5 the values may be divided into two groups:

for
$$r \le 11$$
, mean $k = 0.04$;
, $r > 11$, , $k = 0.08$.

In table 6 the mean value of k is 0.02.

The increase of k with the density r in table 5 cannot be regarded as real, since in table 6, where the density is the greatest, a very small value of k resulted. The difference is probably due to the non-homogeneity of the material in table 5, different charts presenting different degrees of difficulty in counting.

The error-dispersion of the count, being added to the true dispersion of the chart, increases the observed dispersion of densities, producing thus also a *positive excess*, which is, however, very small, as may be inferred from the following figures; the probable error of an observed value of r was assumed equal to

$$\pm 0.674 \sqrt{0.04 r}$$
 for $r \le 11$, and $+ 0.674 \sqrt{0.08 r}$ for $r > 11$.

1) N = 300.

r =	0	1	2	3	4	5	6	7
true distrib.	28.5	50.9	45.3	26.8	- 11.8	4.2	1.2	0.3
observ. distr.	28.8	51.8	44.8	25.0	12.3	4.5	1.4	0.4
difference	-+0.3	+0.9	-0.5	-1.8	+0.5	+0.3	+0.2	+0.1

2) N = 1000.

$$r=$$
 0 1 2 3 4 5 6 7 true distrib. 0.4 2.7 7.9 15.7 23.2 27.6 27.3 23.1 observ. distr. 0.4 3.0 8.3 16.3 22.9 27.1 26.7 22.6 difference $0.0 + 0.3 + 0.4 + 0.6 - 0.3 - 0.5 - 0.6 - 0.5$

N = 1000. Continued.

c) Double or multiple stellar groups. Only groups are here considered which cannot be perceived individually as distinct clusters, but which affect statistically the distribution. For the sake of simplicity we shall confine our attention to double groups

only, as there is no radical difference in the effect produced by multiple or double groups. The deviation from the chance distribution in this case has its origin in the circumstance that some of the stars which enter into the count as independent individuals, are not such but are forced to make agree their position with the position of other stars physically connected with them.

The double stars which may influence the stellar distribution in our counts are more like known wide pairs with common proper motion, as Mizar-Alcor, than double stars in the proper sense. Assuming the average magnitude of the stars in our counts to be 13.0 vis., and estimating the average absolute magnitude at $-2.0 (\pi = 1'')$ which corresponds to spectral type F, the average parallax becomes 0".001. The inferior limit of distance, above which stars were counted as separate individuals, may be assumed = 10", which corresponds to a projected distance of 10000 astronomical units. The upper limit of distance for a physically connected pair hardly exceeds 200 000 astron. units = 1 parsec or about 3' on the chart; according to a statistical investigation of double stars by the writer¹), the number of such distant companions may be roughly estimated; with some extrapolation of the distance-distribution the following data were found.

Number of companions per 1000 single, double, or multiple systems within the limits of projected distance from 10000 to 200000 astr. units:

$$\Delta m_{\text{vis.}}$$
 0.0—0.9 1.0—1.9 2.0—2.9 3.0—3.9 4.0—4.9 5.0—5.9 6.0—6.9 number 16 22 24 29 27 21 52

The difference of magnitude is here denoted by Δm .

The effective frequency of companions which could be included in our counts may be computed in the following way, taking 14.5 as the limiting magnitude (photographic).

magn.	relative number	effective limit of Δm	number of companions per 1000
13.5 - 14.5	8	0.5	8
12.5 - 13.5	4	1.5	27
11.512.5	1.6	2.5	50
< 11.5	0.5	3.5	77
7	Veighted	mean	21

¹⁾ T.P. 25 6 (1924).

The weighted mean is 21 per 1000 systems or per 1021 counted objects. We may assume that 0.02 of the counted stars are companions of double systems, the components of the latter representing thus 0.04 of the counted number. This value is hardly in error by more than 50 %, and may be somewhat overestimated.

Let the number of components of double systems, divided by N, the total counted number, be β ; the number of independent systems, which are thought to be distributed according to the law of chance, is

$$N' = N(1 - \frac{1}{2}\beta).$$

The distribution of the *systems* is obtained by entering table 1 with the argument N'; to obtain the distribution of counted stars, all values of r are to be multiplied by the factor

$$\gamma = \frac{1}{1 - \frac{1}{2}\beta};$$

as r must remain an integer, instead of multiplying by γ , the frequency n(r) must be changed so as to produce the same effect as the increase of r in the ratio γ ; this may be obtained by assuming that a certain fraction of the frequency n(r) represents the frequency of r+1 and, if needed, also of r+2 etc. The smallness of β allows to substitute the rigorous solution by a more simple process.

With $\beta = 0.04$ the computation was made for the following two particular cases.

1)
$$N = 300$$
.

 $\mathbf{2}$ 3 4 5 6 7 8 0 1 0.4 0.1 result. distr. 29.9**50.5** 26.312.0 4.5 1.4 44.0 4.2 chance distr. 28.5 50.9 45.3 26.8 11.8 1.2 0.3 0.1 +1.4 -0.4 -1.3 -0.5 +0.2 +0.3 +0.2 +0.1 0.0difference

2)
$$N = 1100$$
.

r =0 1 $\mathbf{2}$ 3 4 6 7 5 result. distr. 0.2 1.8 11.9 18.8 24.3 26.2 5.524.4chance distr. 1.6 11.7 0.2 5.2 18.8 24.626.624.7 +0.2+0.30.0 -0.3-0.4difference 0.0 +0.2-0.3 N=1100. Continued.

The deviation from the chance distribution is in both cases negligible.

d) Obscured regions and clusters of stars.

The real phenomenon must be very complicated; we shall consider here some simplest schematical cases, consisting in a superposition of two distributions with different areas and different mean density. In the following s denotes the relative area, N — the mean density $per\ chart$.

1) Small obscured region on an average background.

$$s_1 = 0.1, \ N_1 = 200; \ s_2 = 0.9, \ N_2 = 1200.$$
 Mean $N = 1100.$ $r = 0 1 2 3 4 5 6 7$ result. distr. $5.2 7.0 6.8 8.9 13.6 18.9 22.5 22.7$ chance distr. $0.2 1.6 5.2 11.7 18.8 24.6 26.6 24.7$ difference $+5.0 +5.4 +1.6 -2.8 -5.2 -5.7 -4.1 -2.0$

2) Small cluster of moderate density on an average background.

2) Continued.

$$r =$$
9 10 11 12 13 14 15 16 17 ≥18
result. distr. 11.6 7.7 5.1 3.4 2.5 1.8 1.3 0.9 0.6 0.7
chance distr. 14.7 9.5 5.6 3.1 1.4 0.8 0.4 0.2 0.0 0.0
difference $-3.1 - 1.8 - 0.5 + 0.3 + 1.1 + 1.0 + 0.9 + 0.7 + 0.6 + 0.7$

3) Equal areas with considerable difference of density.

$$s_1 = 0.5$$
, $N_1 = 400$; $s_2 = 0.5$, $N_2 = 1600$. Mean $N = 1000$.

$$r=$$
 9 10 11 12 13 14 15 16 ≥17 result. distr. 11.0 10.4 9.0 7.1 5.2 3.5 2.2 1.3 1.4 chance distr. 11.2 6.6 3.5 1.7 0.8 0.3 0.1 0.0 0.0 difference $\frac{11.2}{-0.2} + 3.8 + 5.5 + 5.4 + 4.4 + 3.2 + 2.1 + 1.3 + 1.4$

4) Equal areas with small difference of density.

$$s_1 = 0.5$$
, $N_1 = 800$; $s_2 = 0.5$, $N_2 = 1200$. Mean $N = 1000$.

$$r = 0$$
 1 2 3 4 5 6 7 8 result. distr. 0.8 4.0 10.0 17.2 22.9 25.2 24.0 20.5 15.8 chance distr. 0.4 2.7 7.9 15.7 23.2 27.6 27.3 23.1 17.0 difference $+0.4 +1.3 +2.1 +1.5 -0.3 -2.4 -3.3 -2.6 -1.2$

$$r = 9$$
 10 11 12 13 14 15 16 result. distr. 11.3 7.4 4.5 2.6 1.3 0.7 0.3 0.1 chance distr. 11.2 6.6 3.5 1.7 0.8 0.3 0.1 0.0 difference $+0.1$ $+0.8$ $+1.0$ $+0.9$ $+0.5$ $+0.4$ $+0.2$ $+0.1$

e) Irregular variation of the sensitiveness of the plate and non-homogeneity of the process of engraving; the effect must be similar to the effect produced by source d), but must be very small; no data are available from which the average size of the effect can be even roughly calculated; from what we know of the precision attained in photographic photometry we may estimate

the maximum deviation of the limiting magnitude of a square of the chart at, say, $\pm 0.2 - \pm 0.3$ stellar magnitudes relative to the mean limiting magnitude of the whole chart; comparing this with the data of table 2, we conclude that the influence upon the apparent distribution must be less than the change produced by source a) (effect of the distance from the centre). The effect of source e) may thus be safely neglected.

f) Effect of varying galactic latitude; it may be easily shown that the influence upon the density-distribution, produced by the regular change of stellar number with galactic latitude, is entirely imperceptible for a small area like the area covered by the Carte-du-Ciel charts.

We shall now introduce a quantity w, which may be called the weight of the positive excess of an observed curve; if Pdenotes the probability that a positive excess equal or greater than the observed excess will occur by chance, the weight will be defined by

$$w=\frac{1}{P}\dots$$
 (6).

In table I for each chart showing a distribution with a positive excess weights were computed, separately for the ascending and descending branches of the curve (w_1 and w_2 respectively); the weights range from a few units to 10^{120} ; it may be remarked that the method of computation used gave *minimum* values for the weights, so that in many cases the true weights are several times greater than those given in table I. As only the order of magnitude of the weight was needed, a rough method of computation could be applied; the method is briefly described below.

Let us take a certain part of the distribution of densities, comprised between $r = r_1$ and $r = r_k$, for which positive deviations may be expected; this may be the ascending or the descending branch of the curve; let n_o be the observed, n_c — the computed (chance) frequency of the density r; in a chance distribution the values n_o are spread around the mean value, n_c , with a dispersion equal to $\sqrt{n_c}$; for small n_c the distribution is asymmetrical, and if only positive deviations are considered, the dispersion may be assumed equal to $\sqrt{n_c} + \sqrt{\frac{1}{8}}$, the approximation being fair even for as small values of n_c as 0.01; instead of

the dispersion, the unit of the Gaussian, c, may be computed:

$$c = \sqrt{2n_c} + \frac{1}{2} \dots (7)^{1}$$
.

We may put

$$x = \frac{n_o - n_c}{c} \dots (8).$$

The probability of a positive deviation equal or greater than $n_o - n_c$ is given by

$$p = 1 - \Theta(x) ... (9)$$
, where

$$\Theta(x) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{x} e^{-x^2} dx;$$

the weight is given by

$$w = \frac{1}{p} \dots (10).$$

Let between r_1 and r_k be *i* positive and k-i negative deviations, and let w_{α} , w_{β} , . . . be the weights of the positive deviations; the total weight of the group is given by

$$w = \frac{i!(k-i)!}{k!} w_{\alpha} \cdot w_{\beta} \cdot \ldots (11).$$

Tables 7 and 8 facilitate the computation of the weights. In computing the weights of the two branches, the ascending branch was assumed to end at r_0 —1 for N < 600, at r_0 —2 for N from 600 to 1100 etc, r_0 being the most frequent density in a chance distribution; likewise the descending branch was assumed to begin at $r_0 + 2$, $r_0 + 3$, etc respectively. From the above given examples it appears that within the limits of the ascending or descending branches thus defined negative deviations may occur as a rule; therefore the weights computed are minimum values, as mentioned above.

Table 7. $c = \text{effective unit of Gaussian for positive deviations } (n_0 - n_c > 0)$

n_c	0.0001 0.38	0.001	0.01	0.1 1.00	0.2 1.3	0.4 1.6	0.7 1.9	1.0 2.2	1.5 2.4	$\frac{2.0}{2.6}$	3.0 2.9	4.0 3.3	5.0 3.7	6.0 4. 0	7.0 4.2
n _c	8	9	10	12	14	16	18	20	24	28	32	36	40	50	60
	4.5	4.7	5.0	5.4	5.8	6.2	6.5	6.8	7.4	8.0	8.5	9.0	9.4	10.5	11.5

¹⁾ Approximate formula, used only for $n_c > 4$.

Table 8.
$$w = \frac{1}{1 - \Theta(x)}$$

$egin{array}{c} oldsymbol{x} \ oldsymbol{w} \end{array}$	$\begin{bmatrix} 0.1 \\ 2 \end{bmatrix}$	0.2 2.5		0.4 3.5		0.6 5	0.7 6	0.8 8	0.9 10	1.0 12	1.1 17	1.2 22	1.3 30	1.4 40	1.5 60
$egin{array}{c} oldsymbol{x} \ oldsymbol{w} \end{array}$	1.6 80											2.7 1 4 000		$\begin{vmatrix} 2.9 \\ 40000 \end{vmatrix}$	
$egin{array}{c} x \ w \end{array}$	4. 10 ⁸	5. 10 ¹²	6. 10 ¹⁷	7. 5.10 ²²	8 10 ²⁹	9 5.10 ³⁶	10 10 ⁴⁵	11 10 ⁵⁴	12 10 ⁶⁴	13 10 ⁷⁵	14 10 ⁸⁷	$15 \\ 10^{100}$	16 10 ¹¹⁵		

The different factors affecting the observed distribution of densities may be subdivided into two groups: 1) real differences of density, which were considered under the heading d); 2) various sources of error, to which belong all other cases discussed above, including c) also. Among the sources of error only factors a), b) and c) are of importance, the effect of e) and f) being negligible. It is interesting to calculate the combined effect of the three principal sources of error; the result for two values of N (total number of stars counted) is given below.

1)
$$N=300$$
.

 $r=$
0 1 2 3 4 5 6 7 8

result. distr. 30.4 51.4 42.6 24.5 12.7 4.9 1.7 0.5 0.1

chance distr. 28.5 50.9 45.3 26.8 11.8 4.2 1.2 0.3 0.1

difference $+1.9 +0.5 -2.7 -2.3 +0.9 +0.7 +0.5 +0.2 0.0$
 $w_1 = 5$; Log $w_1 = 0.7$
 $w_2 = 32$; Log $w_2 = 1.5$.

2)
$$N=1000$$
.

 $r=$
0 1 2 3 4 5 6 7

result. distr. 0.5 3.6 9.2 17.1 22.8 26.2 25.2 21.5

chance distr. 0.4 2.7 7.9 15.7 23.2 27.6 27.3 23.1

difference $+0.1$ $+0.9$ $+1.3$ $+1.4$ -0.4 -1.4 -2.1 -1.6
 $N=1000$. Continued.

 $r=$
8 9 10 11 12 13 14 15

result. distr. 15.9 11.3 7.3 4.3 2.0 1.1 0.5 0.2

chance distr. 17.0 11.2 6.6 3.5 1.7 0.8 0.3 0.1

difference -1.1 $+0.1$ $+0.7$ $+0.8$ $+0.3$ $+0.3$ $+0.2$ $+0.1$

$$w_1 = 45$$
; Log $w_1 = 1.65$
 $w_2 = 128$; Log $w_2 = 2.1$. (N=1000)

The weights were computed in each case according to the method described above. It may be inferred that w_2 , the weight of the descending branch, is more sensitive for the combined influence of observational errors than w_1 . Were the assumed size of the error-effect correct, and were there no obscuration or clustering of stars, it should be expected that one-half of the charts would show a weight less than \overline{w} , and one-half — greater than \overline{w} , \overline{w} denoting the theoretical weight of the combined error-effect. Real differences of density must increase the proportion of great w on the expense of the small ones. From the above calculations we may assume:

for
$$N = 200-400$$
 400-600 600-900 900-1200,
Log $\overline{w}_2 = 1.5$ 1.8 2.0 2.2.

The frequency of w_2 above or below the adopted value of \overline{w}_2 is tabulated below; charts with N > 1200 are not taken into consideration as they occur almost exclusively in low galactic latitudes were considerable real differences of stellar density are observed.

	$w_2 < \overline{w}_2$ 1)	$1000 > w_2 \geqslant \overline{w}_2^{1}$	$w_2 \geqslant 1000^1$
N		Number of charts	3
200-400	15	0	0
400600	28	5	1
600—900	3 3	6	8
900—1200	10	4	4
200—1200	86	15	13

Charts with $w_2 \ge 1000$ may be left out of consideration, as there is little doubt that they correspond to real differences of density; for the remaining charts there is an overwhelming preponderance of weights less than the supposed median value, \overline{w}_2 ; as among the large weights there must be several due to real irregularities of density, we conclude that the importance of

¹⁾ Actually $Log \ w_2$ rounded off to 0.1 were counted, instead of w_2 .

that the combined effect hardly exceeds $\frac{1}{2} - \frac{1}{3}$ of the computed value, and that almost every perceptible deviation from the law of probabilities, say of a weight 10 or more, must correspond to real obscuration or stellar clustering.

It appears thus that the inevitable errors and influences, which tend to increase the dispersion of densities, are counterbalanced by some unknown factor acting in the opposite direction. As such a factor may be imagined a systematic error of counting; let us suppose that in rich regions the percentage of faint stars that remain unperceived be greater than in regions where the stars are scarce; this then would tend to increase low densities and diminish great ones, reducing thus the dispersion. An effect of this kind appears not improbable, though uncontrollable by the data of observation.

3. Limiting Magnitude.

In the following the zero-point of the scale of magnitudes, and the function

$$\frac{d \left(\operatorname{Log} N\right)}{dm} = f(B_{gal.})^{1},$$
near $m = 14.5$,

were taken according to Groningen Publications 27, table IV; the individual limiting magnitudes (m_0) for each chart were derived from the counts themselves, and represent thus to some extent independent observational data. The only assumption made in deriving m_0 was that the average limiting magnitude remained constant throughout the whole series; seasonal changes of atmospheric transparency, plate sensitiveness, etc are thus directly affecting the limiting magnitude adopted; in all appearance the error introduced by this source does not surpass 0.1-0.2 st. mg., if it exists at all.

The difference of the limiting magnitude, Δm_0 , for two adjacent charts could be derived with fair precision from a comparison of the counted numbers in the strip $20' \times 130'$ common to both charts 2), by taking the difference equal to the difference

¹⁾ The unit interval of magnitudes is defined by this quantity.

²⁾ Width of the strip = 130' - 120' Cos 24^0 = almost exactly 20'.

of the effective magnitudes of table IV, G.P.27. Table 9 gives the result of the comparison. The galactic latitudes of each strip are not given in this table, as they may be easily interpolated from the galactic latitudes of the centra, contained in table 11.

In table 9 $n_1:n_2$ is the ratio of stellar numbers counted in the common strip; Δm_0 is the corresponding difference of the limiting magnitude; $x = m_0 + const.$ is the concluded limiting magnitude reckoned from an arbitrary zero-point.

The probable error of Δm_0 may be estimated in the following way; let $n_2 > n_1$, and $p = n_1 : n_2$; since on both charts stars were counted within the same area, the n_1 stars counted on the first chart must all have been counted also on the second chart, and only the difference n_2-n_1 may be regarded as subject to accidental variation; the probable error of the ratio p is given,

Table 9.

Ch.	n_1 :	n_2	dm_0	1)	$m_0 + const.$	Ch.	$n_1:n_2$	Δm_0	m_0 + $const.$	Ch.	$n_1:n_2$	Δm_0	$m_0 + const.$
180				, ,	+0.34	13	04 - 104	0.00	+0.28	26	000 . 141	1059	+0.60
1	139:		1		-0.06	14			+0.23	27	202:141	•	+0.03
2	108:				+0.24	15	132:114 102: 79	,	-0.11	28	158:114 171:268		-0.50
3	144: 132:				+0.18	16			0.66	29			+0.16
4	132: 142:		'		-0.02	17	114:130		-0.18	30			-0.32
5			_0.0 0.0		-0.64	18			-0.05	31			+1.02
6	l		$\begin{bmatrix} -0.0 \\ -0.7 \end{bmatrix}$		-0.69	19			+0.52	32		,	+0.29
7			_0.8		0.09	20	65:159	•	-0.93	33			+0.76
8	116:				+0.67	21	117: 93			34			-0.88
9			_0.1		+0.36	22	149:139	,	-0.17	35			+0.07
10			0.2		+0.41	23	128:187		0.37	36	2 4 0: 69		+0.88
11			+0.0		+0.53	24	162:126		+0.09	37	137 : 158	0.18	— 0.59
12	104:				l + 0.38	25	127:254		0.37	38	230:215	+0.08	0.37
13					+0.28	26			+0.60	39		,	-0.39

¹⁾ Preceding minus following.

Table 9. Continued.

Ch.	$n_1:n_2$	Δm_0	$m_0 + const.$	Ch.	$n_1:n_2$	Δm_0	m_0 +const.	$oxed{Ch.}$	$n_1:n_2$	Δm_0	$m_0+const.$
39	165: 474	-1.31	-0.39	65	110:112	-0.03	+0.04	91	54: 56	0.07	+0.78
4 0		+1.83	+0.96	66	140:121		+0.10	92	73: 54		+0.83
41	100: 224	_1.00		67	147:108	+0.47	-0.11	93	81: 99	-0.38	+0.27
42 43	463: 371	+0.31	$\begin{vmatrix} +0.07 \\ -0.29 \end{vmatrix}$	68 69	102:105	-0.04	-0.55	94 95	77:100	0.50	+0.62
43 44	469: 409	+0.20		70	81:109	-0.43	-0.48 -0.02	96	91:111	0.32	+1.08 $+1.37$
4 5	297: 243	+0.26		71	73:112		+0.64	97	88: 25	+2.04	0.72
46			+0.16	72		,	+0.02	98			-0.39
47	1251:1308		+0.10	73			+0.21	99	43: 34		-0.84
4 8	, 020. 000		-0.20	74	116: 93 74:104		-0.07	100	32: 66 73: 66		+0.30
49		1	+0.27	75	115: 53		+0.44	101		+0.08	+0.02
50			+0.80	76	42: 76	•	-0.68	i	60: 67		-0.16
51	1109: 549	-	+0.57	77	79: 88	-0.20	+0.19		6 4 : 89	0.56	-0.08
52 53	545:1298	-1.25	-0.54 +0.60	78 79	51: 38	+0.43	+0.40	*	75: 70	+0.11	+0.38
53 54	809:1008	-0.32	+0.80	80	58: 75	-0.46	$\begin{vmatrix} -0.02 \\ +0.44 \end{vmatrix}$	li	54: 51	+0.09	+0.16 -0.05
55	855: 572	+0.54	+0.24	81	69: 80		+0.66		85: 91	-0.21	+0.05
56	394: 379		+0.20	* 82	10. 10	1	0.19		85: 68		-0.39
57	318: 232		-0.26	83 *		l	+0.06	109	51: 50	·	-0.55
58	235 : 275 251 : 190		-0.01	84	00.00		0.03	110	49: 48 53: 81	,	-0.72
59		,	0.34	85	45: 52		-0.53	111			-0.14
6 0			-0.85	86	57: 50	+0.23	-0.28		75: 95		-0.14
61	220: 151	+0.56	+0.04	87 *	41: 61	-0.71	-0.52	*	92: 92	0.00	+0.11
62	143: 194	-0.46	-0.48 +0.02	88 89	69:109	-0.75	+0.17 +0.90		61: 84	-0.48	0.00· +0.36
63 64	142: 223	-0.57	+0.02	90	101: 74	+0.53	+0.35		104:125	0.29	+0.50
65	162: 108	+0.63	+0.04		51: 67	-0.44	+0.78		115:119	-0.08	+0.56

Table 9. Continued.

-							1	·		 	
Ch.	$n_1:n_2$	<i>∆m</i> ₀	$m_0 + const.$	Ch.	$n_1:n_2$	Δm_0	$m_0+const.$	Ch.	$n_1:n_2$	Δm_0	$m_0+const.$
117	132:126	⊥ 0.20	+0.56	138	352:162	⊥ 1 07	-0.03	159	352:196	L0 84	+0.75
118	104: 72		+0.29	139	187:343		-1.19		231:193		-0.16
119	64:115		-0.21	14 0	274:593		0.43	161	182:258	,	-0.46
120			+0.67	141			+0.48	162			0.00
121	130: 80		0.00	142	503:457	,	+0.24	163	190:221		+0.12
122			+0.56	143	529:728		+0.54	164	300:320		+0.14
123			+0.67	144	519:479	,	+0.32	165	290:346		+0.27
124			+1.25	145	322:252	-	-0.08	166	321:163		0.77
125		1	-0.32				+0.31	167	138:257		+0.07
126			-0.17	147	376:429		+0.34	168	171:168	•	-0.05
127			+0.48	148	472:445	•	+0.19	169	172:146	•	-0.43
128	171: 66	-	-0.78	149	371:503		+0.48	170	128:121	•	-0.66
129		-	0.55	150		·	+0.21	171	126:257		+-0.27
130	120:181		+0.15	151	311:166		-0.68	172	169:138		-0.17
131			-0.25	152	151:239		0.17	173	101:132		+0.14
132		•	-0.63	153	260:389	ļ	+0.22	174	124:133		+0.13
133			-0.01	15 4	465:513		+0.31	175	160: 99		-0.70
134			-0.58	*	481:438	+0.12	+0.11	176	105:194		+0.10
135			+0.70	156	291:707		+1.23	177	133:178		+0.36
136		'	+0.44	157	419:395	'	+1.08		171:156	+0.13	+0.11
137		1	+0.08		348:220	1	+0.36		142:240	-0.76	+0.74
138	318:315	+0.03	-0.03	l '	239:335	-0.46	$ _{+0.75} $		180:151	+0.27	+0.34

Remark. With an asterisk are marked the ratios for which table I gives slightly different numbers. The difference is introduced by a final revision of the counts, table 9 being derived from the original data before the revision; as the change in each case was very small, it appeared unnecessary to re-calculate the data of table 9.

according to the theory of probabilities, by

p. e. =
$$\pm 0.674$$
 $\sqrt{\frac{p(1-p)}{n_2}}$. . . (12),

and

$$\frac{\text{p. e.}^{1}}{p} = \pm 0.674 \sqrt{\frac{1-p}{n_1}} \dots (12').$$

On an average, we may put $n_2 = 200$, p = 0.75, $n_1 = 150$; this gives

$$\frac{\text{p. e.}}{p} = \pm 0.027.$$

With an average stellar ratio $=1:2\frac{1}{2}$ per magnitude this corresponds to a probable error in Δm_0 equal to

$$\pm$$
 0.03 stellar magnitudes.

For high galactic latitudes, where stars are scarce, the probable error is about twice as great, whereas in the rich galactic regions it is about one-half of the value given above. The accuracy of Δm_0 may be regarded as very satisfactory from the standpoint of accidental errors, as for the maximum distance which may occur in our chain — 12 hours in right ascension or 90 charts — the probable error will attain only

$$\pm 0.03 \sqrt{90} = \pm 0.3$$
 st. mg. approximately.

But systematic errors are of such importance in the long chain that they make the comparison of widely separated charts illusory, if the Δm_0 alone are used; indeed, such a small systematic error as 0.01 st. mg. would give a maximum difference = 0.9 st. mg. at two opposite points of the zone; the asymmetry of the chart, due to the inclination of the plate or some asymmetry in the object-glass, may produce an effect many times greater. An additional standard of comparison must therefore be found; for lack of better standards the average limiting magnitude was assumed to remain constant troughout the chain.

The limiting magnitude of a chart k may be assumed equal to

$$m_{0(k)} = -\sum_{k=0}^{k} \Delta m_0 + y_k \dots (13),$$

¹⁾ Relative probable error.

where y_k is a systematic correction depending on k, the order of the chart, and Δm_0 is given by table 9. $\sum_{k=0}^{k} \Delta m_0$ is the algebraic sum of Δm_0 , reckoned from the beginning of table 9.

The values $z = -\sum_{k=0}^{k} \Delta m_0$ were plotted against k as abscissae; a median curve was drawn from hand through the points; in drawing the curve care was taken to make the curve fall in the middle between the maximum and minimum curves, which also were traced; such a proceeding appeared to give more reliable results than simply taking the mean; e.g. the extreme values of atmospheric absorption are probably fairly constant, the maximum transparency being a constant of our atmosphere, and the minimum transparency being limited by the judgement of the It is interesting to note that the difference between the maximum and minimum curves showed a relatively small range, varying from 1.3 to 2.0 st. mg., with a mean value of 1.6 st. mg.; this relative constancy may be regarded as a check of our hypothesis regarding the constancy of the average limiting magnitude throughout the chain. The majority of the Paris plates were obtained before 1905, chiefly in 1897—99; to allow for a possible variation of the sensitiveness of the plates with time. the charts obtained after 1905 were discussed separately; the curve derived from these charts ran fairly parallelly to the general curve, with a small constant shift indicating that the new plates were by about 0.2—0.3 st. mg. more sensitive than the old ones.

The correction y_k could be represented by

$$y_k = -0.0477 \ k + v_k \dots (14),$$

where the coefficient — 0.0477 is evidently due to the mean asymmetry of the plate, the difference of limiting magnitudes of the East and West edges of the chart equalling 0.0477 st. magnitudes; v_k proved to be a complicated periodical function, represented by table 10.

The value $x = m_0 + const.$, given in table 9, was computed from

$$m_0 + const. = x_k = -\sum_{k=0}^{k} \Delta m_0 - 0.0477 k + \hat{v_k} \dots (15).$$

The limiting magnitude of the strip 20' wide is not the same as the effective limiting magnitude of the whole chart evidently both sets of limiting magnitudes differ by a constant value, which, however, there is no need to determine; by adding

a certain constant, c, to x_h the effective limiting magnitude of the chart may be obtained directly. The constant was determined in the following way. Table IV of G.P. 27 was entered with the argument $log N_1$, N_1 being the average number of stars counted on the chart per square degree; the magnitude m_1 obtained in this way is given in the 5th column of table 11; the mean value of m_1 resulted as 14.54; the mean value of $m_0 + const.$ in table 9 is +0.06; hence the correction is

$$c = 14.54 - 0.06 = +14.48$$
.

\overline{Ch} .	v_k	Ch.	v_k	Ch.	v_{k}	Ch.	v_{k}	Ch.	v_{k}	Ch.	v_k
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	$\begin{array}{c} +0.26 \\ +0.19 \\ +0.11 \\ +0.03 \\ -0.04 \\ -0.11 \\ -0.18 \\ -0.24 \\ -0.31 \\ -0.38 \\ -0.45 \\ -0.51 \\ -0.57 \\ -0.63 \\ -0.69 \\ -0.74 \\ -0.79 \\ -0.83 \\ -0.92 \\ -0.96 \\ -1.00 \\ -1.04 \\ -1.10 \\ -1.12 \\ -1.13 \\ -1.10 \\ -1.06 \end{array}$	31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 56 57 58 59 60 59 60 59 60 59 60 59 60 59 60 59 60 59 60 59 60 59 60 59 60 59 60 59 60 59 60 59 60 59 60 59 60 59 60 59 59 60 59 59 59 59 59 59 59 59 59 59 59 59 59	$\begin{array}{c} -0.96 \\ -0.85 \\ -0.72 \\ -0.60 \\ -0.48 \\ -0.36 \\ -0.26 \\ -0.17 \\ -0.07 \\ +0.02 \\ +0.04 \\ +0.06 \\ +0.03 \\ -0.01 \\ -0.10 \\ -0.10 \\ -0.19 \\ -0.28 \\ -0.37 \\ -0.46 \\ -0.56 \\ -0.62 \\ -0.69 \\ -0.66 \\ -0.62 \\ -0.55 \\ -0.47 \\ -0.39 \\ -0.31 \end{array}$	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90	$\begin{array}{c} -0.22 \\0.13 \\ -0.04 \\ +0.05 \\ +0.13 \\ +0.21 \\ +0.29 \\ +0.37 \\ +0.45 \\ +0.52 \\ +0.59 \\ +0.66 \\ +0.73 \\ +0.79 \\ +0.85 \\ +0.91 \\ +0.97 \\ +1.02 \\ +1.08 \\ +1.13 \\ +1.22 \\ +1.26 \\ +1.30 \\ +1.34 \\ +1.37 \\ +1.40 \\ +1.43 \\ +1.49 \\ \end{array}$	91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 110 111 112 113 114 115 116 117 118 119 120	+1.52 +1.55 +1.57 +1.59 +1.60 +1.61 +1.61 +1.61 +1.61 +1.56 +1.51 +1.39 +1.33 +1.26 +1.20 +1.13 +1.05 +0.97 +0.89 +0.80 +0.73 +0.67 +0.52 +0.59 +0.68	121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150	+0.81 +0.95 +1.08 +1.22 +1.38 +1.54 +1.70 +1.86 +1.99 +2.11 +2.24 +2.36 +2.43 +2.49 +2.50 +2.51 +2.48 +2.45 +2.40 +2.36 +2.30 +2.11 +2.36 +2.30 +2.18	151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 167 168 169 170 171 172 173 174 175 176 177 178 179 180	+1.80 +1.76 +1.73 +1.71 +1.68 +1.66 +1.64 +1.62 +1.53 +1.55 +1.53 +1.50 +1.48 +1.44 +1.40 +1.36 +1.32 +1.24 +1.16 +1.08 +1.00 +0.91 +0.83 +0.55 +0.50 +0.42 +0.34

Table 10. .

By adding this correction to x_k , the *true* (observed) limiting magnitude m_0 , given in the 4th column of table 11, was obtained.

4. Areas of Minimum and Maximum Density.

The chief purpose of our investigation consists in looking on a chart for regions where the density of stars is unusually small or large as compared with the mean density of the chart. There may be used two criteria to discriminate between chance configurations and real abnormalities of density in our counts: a) the comparison of the frequency-function of densities, n(r). with a chance distribution, and b) the consideration of the geometrical distribution of densities, adjacent squares of excessively low or high density deserving especial attention. Criterion a) has been theoretically discussed in section 2; there is given a numerical expression for the inverse probability of an observed configuration, in the form of the "weights" w_1 and w_2 ; in most occasions the frequency of densities served as the chief guide in searching for the exceptional areas. As to the geometrical distribution, no mathematical expression for the probability of different configurations was used; the problem is too complicated to allow of a general solution without certain restrictions: on the other hand, the sensitiveness of this criterion is much less than the sensitiveness of the frequency-function of densities; therefore, the geometrical configuration was used only as an auxiliary method, the chief weight being laid upon the character of the function n(r).

The actual search for the exceptional areas was made in the following way. On charts where some positive excess of the function n(r) either on the ascending or on the descending branch was found, adjacent groups of the low or high density which showed the excess where sought; in table I the densities of the sparse areas, found in this way, are printed in heavy type, whereas the densities of the rich areas are printed in italics. In the majority of cases the reality of these configurations stands without question, as the weight (inverse probability) of the excess, itself considerable, must be multiplied by the "weight" of the geometrical configuration. In doubtful cases an approximate value of the probability of the geometrical configuration was used in deciding the reality of some area found.

For the remaining charts, where no certain positive excess was revealed by the frequency of densities, the geometrical configuration only was examined; very few areas worth notion were found.

It may be expected that the excess in the frequency-function n(r) and the peculiarities of the geometrical distribution, both being due to a common cause, are not independent from one another; a great excess in n(r) must be accompanied almost certainly by real areas of obscuration or clustering, the ascending branch (weight w_1) being especially sensitive for obscuration, and the descending branch (w_2) — for clustering; this is confirmed by the observational data, as shown by the following tables.

Table a.

	$\operatorname{Log}\ w_1$	< 0.6	9.0 9.0	0.9 1.1	1.2 1.4	1.5 1.7	1.8 2.0		2.4 2.6	03	3.3 3.5	3.63.8	3.9 4.1	4.2 4.4	4.5 4.7	4.8 5.0
imber of arts on which	areas of obscuration were found	13	5	10	7	4	6	4	7	3 5	2	$\begin{vmatrix} 2 \end{vmatrix}$	3	5	1	2 34
numbe charts whic	no areas of obscuration were found	49	6	3	2	3	1	2	1	0 0	0	0	0	0	0	0 0
s on ch	areas of clustering were found	17	4	9	4	5	7	3	7	3 4	2	2	3	5	1	2 34
number charts which	no areas of clustering were found	45	7	4	5	2	0	3	1	0 1	0	0	0	0	0	0 0

Table β .

	${ m Log} w_2$	> 0.6	0.6 0.8	0.9 1.1	1.2 1.4	1.5 1.7	8	.1	4	7.	:	3	3.6 3.8	$3.9 \dots 4.1$	4.2 4.4	4.5 4.7	4.8 5.0	> 5.0
ber of ts on ich	areas of obscuration were found	13	3	7	5	5	6	8	6	2	6	5	4	4	0	1	3	35
numb charts whi	no areas of obscuration were found	42	8	3	4	3	2	1	3	0	0	0	0	0	0	0	0	1
ber of ts on ich	areas of clustering were found	13	2	3	7	7	6	7	8	2	5	4	4	4	0	1	3	36
number charts which	no areas of clustering were found	4 2	9	7	2	1	2	2	1	0	1	1	0	0	0	Ö	0	o

Tables 11, 12 and 13 contain the result of the examination of the charts.

In table 11 the first column contains the ordinal number of the chart; next follow: B — the galactic latitude of the centre of the chart; N — the total number counted; m_0 — the

Log w	< 0.6	9.0 9.0	0.9 1.1	1.2 1.4	1.5 1.7	1.8 2.0	2.1 2.3	2.4 2.6	2.7 2.9	3.0 3.2	3.3 3.5	3.6 3.8	3.9 4.1	4.2 4.4	4.5 4.7	4.8 5.0	> 5.0
frequency of w_1	62	11	13	9	7	7	6	8	3	5	2	2	3	5	1	2	34
$egin{array}{c} ext{frequency} & ext{of} \ ext{w_2} \end{array}$	55	11	10	9	. 8	8	9	9	2	6	5	4	1	0	1	3	36
theoretical (chance) frequency	135	23	11	5.6	2.8	1.4	0.7	0.35	0.18	0.09	0.045	0.022	0.011	0.006	0.003	0.0015	0.0015

Table γ . Distribution of weights.

34

true limiting magnitude, derived as explained in the preceding section; m_1 — the limiting magnitude taken with the argument Log N from table IV of Groningen Publications 27; the difference m_1-m_0 , which may be taken as a measure of the relative density of stars; positive differences indicate that the region of the chart is richer than on the average for the same galactic latitude; negative differences indicate a relative scarceness of stars, maybe due to absorption of light in space; next are given $Log w_1$ and $Log w_2$, w_1 and w_2 denoting the weights of the positive excess of the ascending and descending branches of the curve n(r)respectively; weights below 5, or Log w below 0.7 are not recorded; s_1 is the total area covered on the chart by the regions of minimum density, the unit of area being 100 square minutes; m' is the effective limiting magnitude of the sparse area, read from table IV of G.P. 27; $A = \frac{s_1 \Delta_1}{169}$ may be called the *relative* obscuration, a quantity which will be discussed in the following section; Δ_1 is defined by

$$\Delta_1 = m' - m_1$$
;

in a like manner, s_2 is the area, m'' — the effective limiting magnitude of the region of maximum density, and $C = \frac{s_2 \Delta_2}{169}$ is the relative clustering, Δ_2 being given by

$$\Delta_2 = m'' - m_1$$
.

Finally, the two last columns contain the differences $m'-m_0$ and $m''-m_0$, given to the first decimal place only, which, like the differences in the 6th column, may serve as a measure of the defect resp. excess of density in the poor resp. rich areas,

as compared with the normal density given by Van Rhijn for the corresponding galactic latitude.

Doubtful data relating to the minima or maxima are bracketed; as doubtful were regarded regions for which neither of the weights surpassed a certain limiting value; this minimum value of the weight was assumed as follows:

for regions of minimum density, $\text{Log } w_1 = 0.8$ or $\text{Log } w_2 = 1.4$; for regions of maximum density, $\text{Log } w_1 = 1.4$ or $\text{Log } w_2 = 1.1$.

Among the charts where w exceeded this limit at least $\frac{2}{3}$ showed definite regions of obscuration or clustering. Thus the reality of the not bracketed regions of obscuration or clustering is highly probable, the probability being much increased by the peculiarity of the geometrical configuration. It may be remarked that statistically the doubtful (bracketed) areas are nevertheless of almost the same value as the others, whereas in an individual consideration of the areas it is safe to reject the doubtful ones.

The effective magnitudes m' and m'' were corrected for the distance from the centre, to make these values comparable with the effective limiting magnitude of the average chart. According to the data of table 2 the following round values of the correction were adopted:

mean	distance centre	from	0'	10'	20′	30′	4 0′	50 <i>′</i>
adop	ted correc	tion						
_	(st. mg.)		+0.30	+0.20	+0.10	0.00	-0.10	-0.20
mean	distance	from			o =1	= 01	= 0.1	071
	centre		60'	63'	67′	72'	78	8 5 ′
adop	ted correc	tion						
	(st. mg.)		—0.1 0	0.00	+0.10	+0.20	+0.30	+0.50

The corrections are small and in the majority of cases produce no substantial change in the result.

Tables 12 and 13 contain a list of the regions of minimum and maximum density, the cases bracketed in table 11 being omitted but for a single exception (in table 13, № 98, where the geometrical configuration is remarkable). The coordinates refer, if possible, to the centre of gravity of the region; on the other hand, it

appeared safe to record only coordinates of points actually found in the region; as the centre of gravity could not answer this restriction in every case, on many complicated configurations coordinates of several characteristic centra of the same region were noted, instead of the centre of gravity; as an example may serve No 27 of table 12, where coordinates of 6 centra are given.

Table 11.

	i. *		Lim.	Magn.	m_0	Lo	\mathbf{g}		' Mini	ma		Maxi	ma	$-m_0$	$-m_0$
Ch.	B	N	Ohe	G.P.27						$s_1 \Delta_1$		1	$s_2 \Delta_2$		ĺ
	ar e	٠.	m_0	m_1	m_1	w_1	w_2	s_1	$ ^{1})m' $	$\frac{s_1 \mathcal{A}_1}{169} (\mathcal{A})$	s_2	1)m''	$\frac{s_2 \mathcal{L}_2}{169}(C)$	m'-	,'≋
			100							i gravat	,		. 4		
1	-38°		14.42	14.50	+0.08	0.7	0.8	2. 3						-	
2	—38		14.72	14.77	+0.05	1.0	4.0		19.06		$\frac{-}{21}$	$\frac{-}{15.68}$	I	9.6	
3	-38		14.66	14.70 14.73	$+0.04 \\ +0.27$	1.8 2.0	4.0 1.7		$12.06 \\ 13.47$	0.02	7	15.50	$0.12 \\ 0.03$	$-2.6 \\ -1.0$	$^{+1.0}_{+1.0}$
4 5	$-38 \\ -39$		14.46 13.84	14.75	+0.27 +0.43	2.0	1.4	11	13.47	0.00		15.50	0.03		71.0
6	—39 —39		13.79	14.07	+0.28	2.4	1.8	20	12.24	0.22	12	14.90	0.06	-1.6	+1.1
7	39		14.39		+0.18		1.0			0.22			-0.00	1.0	
8	-39		15.15		-0.01	5.8	2.3	6	13.57	0.06	35	15.92	0.16	-1.6	+0.8
$\ddot{9}$	—39		14.84		-0.21	2.6	3.3		12.72	0.10		15.65	0.10	-2.1	+0.8
10	—39		14.89		-0.59			 							` <u> </u>
11	—3 8		15.01	14.77	-0.24	3.9	3.6	8	12.37	0.11		15.20	0.01	-2.6	+0.2
12	—38		14.86		-0.53			[9	13.08	0.07]	[2	15.60	[0.02]	(-1.8)	(+0.7)
13	38		14.76		-0.49	_	0.7	[7	12.37	0.08]	_			(-2.4)	. —
14	-37		14.71	14.23	-0.48	1.9	2.5	-			3	15.40	0.02	'	+0.7
15	36		14.37	14.20	-0.17									· —	
16	-36		13.82		+0.04		1.3	_	10.00			15.12	0.02	1.0	+1.3
17	-35		14.30		+0.20	1.1	1.8	7	13.00	0.06	8	15.69	0.06	-1.3	+1.4
18	-35		14.43		+0.14	1.0	9.3	7	14.60	0.03	_	16 15	0.09		+1.2
19	-34		15.00		+0.43	1.0	2.3	′	14.69	0.05	5	16.15	0.02	-0.5	+1.2
20	—33		13.55 14.72		$ \dot{+} 0.04 \\ -0.12 $	$\frac{-}{2.0}$	3.1	6	12.97	0.06	$\frac{-}{21}$	15.36	0.10	-1.8	<u></u> 06
$\begin{array}{c} 21 \\ 22 \end{array}$	$-32 \\ -31$		14.31	14.11	-0.12 -0.20	4.3	3.6		12.44	0.31	9	14.96	0.10	_1.0	$+0.6 \\ +0.6$
23	$-31 \\ -30$		14.11	14.22	+0.11	0.9	$\frac{3.0}{2.0}$		12.83	0.14		14.50	- 0.0±	-1.9 -1.3	
$\frac{23}{24}$	-29	1143		14.60	+0.03	<u> </u>	1.2		11.90	0.03]	4	15.90	0.03	(-2.7)	+1.3
$\frac{24}{25}$	-28		14.11	14.07	-0.04		0.8		_		-				_
$\frac{26}{26}$	$-2\overset{\circ}{7}$		15.08		-0.51	2.6	_	17	13.32	0.13	15	15.18	0.05	—1.8	+0.1
27	-26		14.51	13.97	-0.54	3.4	3.5	12	12.11	0.13	5	15.06	0.03	-2.4	+0.6
2 8	-25	787	13.98		-0.19	0.9	3.1	28	12.77	0.17	2	15.42	0.02	-1.2	+1.4
29	-23		14.64	15.06	+0.42	3.0	2.6	9	14.15	0.05	4	15.80		-0.5	+1.2
3 0	-22		14.16		+0.17	1.5			12.59	0.03	4	15.40		-1.6	+1.2
31	21		15.50		0.44	30.	11.	21	13.60	0.18	31	15.53		-1.9	+0.0
32	20		14.77	13.65	-1.12	5.6			12.13	0.22	7			-2.6	+0.0
33	-18	1378	15.24	14.13	-1.11	17.	11.	40	12.81	0.31	24	15.06	0.13	-2.4	-0.2
34	-17		13.60		-1.45				10.54	0.25	19	14.07	0.08	-3.1 -3.4	
3 5	-15 -14		14.55		-1.66		4.0		11.18 $ 12.24 $		12	14.07 14.98	$\begin{array}{c c} 0.08 \\ 0.21 \end{array}$	-3.4	-0.3
36 37	$-14 \\ -12$		15.36 13.89		-1.39 $ -0.83 $		54. 5.3	61 14	12.24		3 3	14.98 14.12	0.21	-3.1 -2.8	+0.2
38			14.11		-0.85 -0.22							15.21		-1.4	+1.1
J O	1 11	1 1100	dir mer r	10.00	, 0.44	1 10.	140.	10	114.12	1. 0.40	11 . 0	,	J.J.	,	1

¹⁾ Corrected for distance from the centre of the plate.

Table 11. Continued.

-									* * * *		11				1 1
		÷	Lim.	Magn.	$-m_0$	Lo	g		Mini	ma 🗀		Maxi	ma	$m'-m_0$	$m''-m_0$
Ch.	\boldsymbol{B}	N	Obs.	G.P.27	1				1	8,41	,		$s_2 \Delta_2$	֓֞֞֜֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	
			m_0	m_1	m_1	w_1	w_2	s_1	m'	$\frac{s_1 \Delta_1}{169}(A)$	s_2	m''	$\frac{s_2 \mathcal{Q}_2}{169}(C)$	m,	"w
						<u> </u>			1		11	1	(1	
3 9	_ ~ 90	1944	14.09	12.60	-0.40	9 1	20		10.00	0.05	10	1.00	0.00		1.45
4 0	-8		15.44	14.62	-0.40 -0.82	3.1 14.	3.0 18.	24	12.69 $ 13.90 $	$\begin{array}{c c} 0.05 \\ 0.10 \end{array}$	23	14.36 15.34	$\begin{array}{c} 0.06 \\ 0.10 \end{array}$	$-1.4 \\ -1.5$	$+0.3 \\ -0.1$
41	$-\ddot{6}$		13.58	12.71	-0.87	0.7	0.8		13.90	0.10	25	10.04	0.10	-1.5	<u></u>
4 2	— 5	2852	14.55			19.	25.		13.66	0.17	17	15.24	0.06	-0.9	+0.7
43	— 3		14.19	14.47	+0.28	2.1	8.	16	13.77	0.07	24	14.99	0.07	-0.4	+0.8
44	2		13.95	14.44	+0.49	8.8			13.60	0.11		15.05	0.07	-0.4	+1.1
4 5	0		13.61	13.97	+0.36	2.5	12.		13.36	0.18		15.14	0.04	-0.2	+1.5
46 47	$+ 1 \\ + 3$		14.64 14.58	15.77 15.57	+1.13	49. 21.	59.		14.61	0.10		16.73	0.08	-0.0	+2.1
48	+5		14.28	14.84	+0.99 +0.56	4.3	17. 4.0		14.31 13.42	$\begin{array}{c c} 0.16 \\ 0.05 \end{array}$		16.71 16.01	$\begin{bmatrix} 0.06 \\ 0.00 \end{bmatrix}$	-0.3	+2.1
49	+6		14.75	15.63	+0.88	5.5			14.19	0.03	4	16.55	$0.00 \\ 0.02$	$-0.9 \\ -0.6$	$+1.7 \\ +1.8$
50	+8	10246	15.28	¹)16.53	+1.25	9.	12.		15.68	0.03		17.00	0.04	+0.4	+1.7
51	+10	8693	15.05	¹)16.30	+1.25	17.	10.		15.59	0.07		17.02	0.01	+0.5	+2.0
52	+12		13.94	15.28	+1.34	17.	7		14.4 0	0.02	1	16.43	0.01	+0.5	+2.5
53	+13			1)16.18	+1.10	6.	6.		15.08	0.05		17.07	0.00	0.0	+2.0
54 55	$+15 \\ +17$		15.28 14.72	$16.00 \\ 15.22$	+0.72	4.	6.		15.10	0.02		16.79	0.02	-0.2	+1.5
56	+18		14.72	15.22	$+0.50 \\ +0.38$	4.1 4.4	3.7 6.		14.51 14.17	$\begin{array}{c} 0.05 \\ 0.05 \end{array}$		15.51	0.09	-0.2	+0.8
57	± 20		14.22	14.43	+0.21	0.7	2.4		13.51	0.03		15.56 15.11	$\begin{array}{c} 0.05 \\ 0.02 \end{array}$	$-0.5 \\ -0.7$	$+0.9 \\ +0.9$
58	+21		14.47			7.	9.		13.30	0.14		15.40	0.05	-1.2	+0.9
59	+23	1303	14.14	14.40	+0.26							15.06	0.01]		(+0.9)
60	+24		13.63		-0.04	1.3	1.6		11.37	0.07	i	· 	1	-2.3	
61	+26		14.52	14.73	+0.21	1.3	1.1	7	13.89	0.03		15.46	0.03]	-0.6	(+0.9)
$\begin{array}{c} 62 \\ 63 \end{array}$	$^{+28}_{+30}$		14.00 14.50	14.25 14.67	+0.25 +0.17	1.1 3.1	$\frac{2.5}{2.8}$	$\frac{-}{12}$	19 15	0.11		15.06	0.01		+1.1
64	$+30 \\ +31$		15.11	14.83	-0.28	5.1	1.0	14	13.15	0.11	6	15.22	0.02	—1.4	+0.7
65	+33		14.52	14.32	-0.20	1.8	1.8	14	12.58	0.14	13	15.13	0.06	-1.9	+0.6
66	+35		14.58	14.50	-0.08	2.1	2.0	_			_	_			
67	+37		14.37	14.43		2.5	0.9		13.06	0.24	13	15.33	0.07	-1.3	+ 1.0
68	+39		13.93		+0.40	0.7	1.1		11.63	0.06]	—			(-2.3)	
69	+40		14.00	14.27	+0.27	-	_	[11	12.32	0.13]				(-1.7)	
70 71	$+42 \\ +44$		14.46 15.12	14.30	-0.16 -0.32		0.8	_			$\begin{bmatrix} -6 \end{bmatrix}$	15.73	0.03]	·	- <u>*</u> - (- \(\(\hat{C} \) \(\)
72	+46		14.50		+0.10	1.6	$\frac{-}{2.6}$			_	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$	15.73	0.03		(+0.6) +1.3
73	+48		14.69	14.77	+0.08	_		ا 8 ا	13.06	0.08]	_	15.82	0.01	(-1.6)	T1.0
74	+49		14.41	14.83	+0.42		0.7	`	-				_		
75	+51		14.92	15.00	+0.08	_				· —			-		· —
76	+53	325	13.80	13.83	+0.03					-			<u> </u>	= 1	
77	+55		14.67	14.67	0.00	_		-		·	-	-	-		
78 79	$+57 \\ +58$		14.88 14.46	14.50 14.00	-0.38 -0.46	1.3	$\frac{-}{0.9}$	57	12.80	0.40	_	-		-	, ,
80	+60	446	14.92	14.50	-0.40 -0.42	1.5	0.8		-2.00	U.±U				-1.7	
81	+62		15.14	14.75	-0.39	1.3	0.8	8	12.88	0.09		_	: _	-2.3	
82	+64	377	14.29	14.27	-0.02			_	_			_			-
83	. 66	435	14.54	14.57	+0.03	_ [_			[2	15.97	0.02]		(- 1. 4)
84	+67		14.45	14.38	-0.07				-		-	_		-	
85 88	+69		13.95		+0.13		1 2	20	19.49	0.24	_	10.00	-		
80	 +71	392	14.20	14.40	+0.26	0.9	1.5	20	12.43	0.24	2	16.29	0.02	-1.8	+2.1

¹⁾ Extrapolation.

Table 11. Continued.

													ń ————		
			Lim.	Magn.	m_0	Lo	g.		Mini	ma		Maxi	ma	$m'-m_0$	_ m _
Ch.	\boldsymbol{B}	N	Obs.	G.P.27	m_1 —1				,	$s_1 A_1$,,	$ s_2 \mathcal{A}_2 _{\mathcal{O}}$	Ĩ	m"
			m_0	m_1	m_1	w_1	w_2	s_1	m'	$\frac{s_1 \mathcal{A}_1}{169}(A)$	$ s_2 $	m''	$\frac{s_2 \mathcal{\Delta}_2}{169}(C)$	3) E
															<u> </u>
87	$+73^{\circ}$	299	13.96	14.12	+0.16	_		_			[2	16.32	0.03]		(+2.4)
88	∔74	461	14.65	14.78	+0.13			-	. —						
89			15.33		+0.16	1.2	0.8	_			[2	17.00	0.02]		(+1.6)
90			14.83		-0.14		_		12.98	0.12]	_			(-1.8)	+1.1
91	+79		15.26		-0.57		2.3	18	12.90	0.19	2	16.40	0.02		+1.1
92 93			15.31 14.75	14.62 14.73	-0.69 -0.02		1.7	19	12.38	0.26	18	15.94	0.13	-2.4	+1.2
93 94			15.10		-0.02	1.0	1.0		12.30	0.20	10	10.94	0.13		T1.2
9 5			15.56		-0.10		1.5				4	16.49	0.02		+0.9
96			15.85		-0.27		_					_			
97			13.76		-0.01		_	_				_	·		
98			14.09	14.31	+0.22					_	—			_	
99			13.64		+0.01				_				-		_
100			14.78	14.73	-0.05			-	10.00		-			10	
101	+81		14.50 14.32		$+0.08 \\ +0.07$	1.0	1.3	25	12.69	0.28	_			-1.8	_
102 103			14.52 14.40		+0.07 +0.41	1.6	2.1	9	12.52	0.12				-1.9	
103			14.86	14.92	+0.06		4.1	_	12.02	U.12					
105			14.64	14.86	+0.22		_			_	[2	16.46	0.02]		(+1.8)
106			14.43	14.86	+0.43			-							
107	+71		14.53	15.04	+0.51			[3	11.56	0.06]	-			(-3.0)	
108			14.09		+0.37			_		_	_				
109			13.93		+0.34			-		_	_	15.00	-		-
110			13.76		+0.70	1.1	2.2				11	15.83	0.09		+2.1
111	$^{+64}_{+62}$		14.34 14.34		+0.52 +0.77	_	0.8	-			_			_	
113			14.59		+0.30		0.0			_					_
114					+0.41	_	1.3				2	16.29	0.02	<u> </u>	+1.8
115					+0.30			_	_			16.42	0.02]		(+1.6)
116	+55	746	15.02	15.14	+0.12	_		-	_	_	<u> </u>				·
117			15.04		-0.07		_	_		_		16.30	0.02]		(+1.3)
	+51		14.77		+0.20		2.1	2	11.80	0.04		16.11	0.03	-3.0	+1.3
	+50		14.27		-0.00 -0.07	1	_	_			-	15.26	0.04]	_	(+1.0)
120	$+48 \\ +46$		15.15 14.48		-0.07 -0.41			[18	12.63	0.15]		_		(-1.8)	
	+44		15.04		-1.01	2.1	2.6	20	12.36	0.20				-2.7	
123	+42	718	15.15	14.60	-1.01 -0.55	$\overline{2.6}$	3.2		12.76	0.09	17	15.41	0.08	-2.4	+0.3
	+41		15.73		-0.19	2.4	2.0	 —	_		4	16.80	0.03		i ∔1.1
	+39		14.16		-0.09	_			13.01	0.16]	[3	15.45 15.40	0.02]		(+1.3)
	+37		14.31	14.47	+0.16	_		[5	12.40	0.06]	$\begin{bmatrix} 7 \\ 12 \end{bmatrix}$	15.40	0.04]	(-1.9)	(+1.1)
127			14.96		+0.11		3.8	12		0.12		16.03	0.07	-1.5	+1.1
	+33		13.70		-0.36 +0.04	0.7	1.0	[15	$11.46 \\ 12.90$	$0.17] \\ 0.18$		 15.33	0.05	(-2.2)	
129 120	+32 +30		13.93 14.63		$\begin{vmatrix} +0.04 \\ 0.00 \end{vmatrix}$	1.4	1.6		13.34			15.35	0.03	$-1.0 \\ -1.3$	+1.4 (+0.7)
	+28		14.23		-0.51		1.1		12.18	0.19		~		-2.0	_
	+26		13.85		-0.29		0.8	_		-					
133	+25		14.47		-0.30	3.2	2.6	14	12.90	0.11		14.90	0.03	1.6	- -0.4
134	+23	587	13,90	13.28	-0.62	—		[15	12.22	0.09]	_		_	(-1.7)	·—
135			15.18		-0.46				13.97	0.15		15.23	0.13	-1.2	+0.0
	+20	2121	14.92	14.84	-0.08				14.03	0.02		15.44	0.01	0.9	+05
137	+ 18	1775	∥ 14. 56	14.47	—0.09	1.0	2.0	118		0.10	14	15.02	0.04	—1. 0	+0.5

Table 11. Continued.

GI.	70	•	Lim.	Magn.	-m ₀	Lo	g.		Mini	ma		Maxi	ma	m_0	- m ₀
Ch.	В	N	Obs. m_0	$egin{bmatrix} G.P.27 \ m_1 \end{bmatrix}$	m_1-	$oxed{w_1}$	w_2	s_1	m'	$\frac{s_1 \Delta_1}{169}(A)$	s_2	m''	$\frac{s_2 \Delta_2}{169}(C)$	$m'-m_0$	m''—m ₀
			1	L]	<u> </u> 	1	<u> </u> 	l	1	1	
138	$+16^{0}$	2129	14.45	14.62	+0.17	1:3	7.	6	13.96	0.02	11	15.09	0.03	-0.5	+0.6
139		979	13.29	13.50	+0.11 +0.21	3.1	3.4		12.48			15.09	0.03	-0.8	70.0
140		2006	14.05	14.40	+0.35		8.	11	13.05		20	14.98	0.07	-1.0	+0.9
141	+11	4430	14.96	15.38	+0.42			10	14.43		8	16.31	0.04	-0.5	+1.4
142		3426	14.72	14.97	+0.25		14.	33	14.38	0.12	34	15.45	0.10	-0.3	+0.7
143	 8	4437	15.02	15.28	+0.26	2.3	6.	7	14.02	0.05	11	16.05	0.05	-1.0	+1.0
144		3059	14.80	14.75	0.05	21.	14.	24	13.98	0.11	22	15.38	0.08	0.8	+0.6
145		1571	14.40	13.91	-0.49				13. 20	0.07	9	14.63	0.04	-1.2	+0.2
146		3072	14.79	14.72	0.07		46.		13.59		44	15.28	0.15	-1.2	+0.5
147		3489	14.82		+0.06		38.		14.19		42	15.45	0.14	-0.6	+0.6
148		3358	14.67	14.82	+0.15		68.		14.01	0.21	32	15.51	0.13	-0.7	+0.8
149		3232	14.96	14.77	-0.19		11.		14.19		13	15.62	0.07	-0.8	+0.7
150		2406	14.69	14.42	-0.27		7.		13.50			$15.01 \\ 14.28$	$0.05 \\ 0.08$	-1.2	$+0.3 \\ +0.5$
151 152	- 5 c	930	13.80 14.31	13.27 13.94	-0.53 -0.37				11.94	0.09	13 2	14.20	0.03	-1.9	$+0.5 \\ +0.5$
153		1607 2387	14.70	14.47	-0.37 -0.23		17.		13.70	0.25	33	15.18	0.01	<u></u>	+0.5
153		2888	14.79	14.81	+0.02		8.	33	14.01	0.16	38	15.27	0.11	-0.8	+0.5
154		2485	14.59	14.62	+0.02 +0.03		11.	40	13.81	0.19	29	15.17	0.09	-0.8	+0.6
156		3967	15.71	15.28	-0.43		4.	5	13.56	0.05	7	16.08	0.03	-2.2	+0.4
157		2241	15.56		-1.00				13.71	0.13	12	15.30	0.05	-1.8	-0.3
158		1563	14.84		-0.74				12.93		5	15.01	0.03	—1.9	+0.2
159		2633	15.23		-0.32				14.22		25	15.44	0.08	-1.0	+0.2
160		1784	14.32	14.47	+0.15		5.0	17	13.52	0.10	14	15.14	0.06	-0.8	+0.8
161	—19	1328	14.02	14.13	+0.11				13.13		11	14.78	0.04	0.9	+0.8
162		1476	14.48		-0.11	2.1	2.2	14	13.47	0.07		l		-1.0	
163		1653	14.60		+0.02			<u> </u>			7	15.48	0.04		+0.9
164		2070	14.62		+0.38				13.71	0.04	4	15.71	0.02	-0.9	+1.1
165		2427	14.75		+0.57	2.7			14.84	0.01	29	15.85	0.09	+0.1	+1.1
166		1010	13.71	14.18	+0.47		1.4		12.72	0.14	11	15.21	0.07		+1.5
167		1552	14.55		+0.35				13.73 $ 12.96 $		39	15.51	0.14	$-0.8 \\ -1.5$	+1.0
168		1235 802	14.43 14.05		$\begin{vmatrix} +0.20 \\ -0.01 \end{vmatrix}$		3.4	4	12.90	0.04				-1.5	_
$\frac{169}{170}$			13.82		+0.29	10		13	12.75	0.11	[3	15.01	0.021	-1.1	+1.2
170		1574	14.75	15.17	+0.29	4.3	2.0	16	14.02	0.11	8	15.78	0.03	-0.7	+1.0
172		875	14.31	14.36	+0.05				12.43			15.34	0.04	-1.9	+1.0
173		981	14.62		-0.02					_		_	_	_	
174		981	14.61		+0.02		1.2	_			8	15.60	0.05		+1.0
175		679	13.78		+0.29			[4	12.01	0.05]	—	_		(-1.8)	
176		1213	14.58	15.00	+0.42	$\parallel 2.0$	1.5		13.51	0.08	4	15.84	0.02	-1.1	+1.3
177	36	1064	14.84	14.90	+0.06						-		_		
178	36	1022	14.59		+0.24	0.7		[3	12.88	0.04]		_		(-1.7)	
179		1310	15.22		+0.03			-	-	_	-				
180	38	908	14.82	14.73	-0.09		1.6	_	-		4	15.70	0.02		+0.9
	1	}	П	1	1	"		,	•	1	"	•		' '	

Table 12.

Catalogue of Obscured Regions in the Zone +24° (from 22°55′ to 25°05′)

s = area, unit of area = 100 square minutes.

_	19	00					10	000	T .		T
No	α	$\check{\delta}$	s	Ch.	Rem.	№	α	δ	s	Ch.	Rem.
		\perp			10011.	"				010.	litter.
		· · · · ·	<u> </u>	1	1	<u>' </u>	<u> </u>		1		
	h m	240404					h m				
1		24 ⁰ 10′	2	3		36	4 53.8	24045'	1		
2 3		23 45 24 10	5	3		n	55.3	24 40	30	38,39	
	23.3		6	4 4		n	57.5	24 50 24 50			
4 5 6	37.5		5	6		3 7	5 00.4 12.0	23 55	18	· 40	,
-6	40.4		6	6		38	16.0	24 50	6	40	
7	41.1		4	6	٠.	39	23.6	23 30	ļ.		Ch. 41 too poor
8	42.9		5	$\ddot{6}$			24.4	24 40	26	42	to show the
9	1 00.4		6	8	e e e	4 0	26.7	24 50	3	42	region.
10	07.4	24 50	9	9		41		23 50	16	43	
11	20.7		1	11		42	41.8	23 00			
12	21.5		1	11		n		23 10	8	44	}
13	23.6		4	11)	"	42.5	23 20			
14		23 40			J	43	45.5	23 00	5	44	
14	2 09.5		6	17		44	47.2	24 55	8	44	
15 16	21.1	23 05 23 15	7	19		45	49.8	23 30	28	44,45	٠.
17 17	40.2 49.8		28 5	21,22		46 47	55.6 52.7	23 15 24 15	2.0	46	
18		23 30	5	22 23		41	54.9	24 15 23 50	24.	45,46	
19	53.1			23	,	n		24 15	44.	45,40	}
		24 00	12	23	 	4 8		23 52	1.8	46)
".	56.7					49		23 00	3.8	46	
20	3 19.3	23 40	Ì		ĺ	50	04.4	23 00	1.5	46	corner, doubtful
"	20.7		17	26		51	04.6	24 50	2.0	46	corner, doubtful
"	21.5		11	20		52		23 22	1.2	47	
n	24.0				J	53	08.0	24 00	12.	47	
21	26.7		11	27		54		24 40			
22	36.4		28	28		7		24 48	4 .0	47	}
$\frac{23}{24}$	40.0 40.0		6 3	29 29		,, 5.5		25 00	2.5	47)
$\frac{24}{25}$		25 00 25 00	3	30		55 56	09.8 11.4	23 05 23 30	2.5 1.8	47 47	
26	4 03.6		26	31,32		57		24 35	1.5	48	
$\frac{20}{27}$		24 35	20	01,02)	58		24 05	2.0	48	
"		25 00				59		23 02	2.8	48,49	
'n		24 4 5	51	20.22		60	27.5	25 00	0.8	50	corner, doubtful
"		$25 \ 00$	51	32,33		61	28.6	24 58	2.2	50	
"		24 4 5				62	36.2	23 00			
"		24 40)	63		25 00	5.2	50,51	
28		24 10	26	34	=Barnard 18	64		23 08	1.5	51	
29		25 00	4	35		65		24 35	1.0	51	
30		24 00	8	35		66		25 02	1.5	51	
31 32		24 55 23 50	5 2	35 36		67 68	44.0	$\begin{bmatrix} 23 & 02 \\ 24 & 32 \end{bmatrix}$	2.8	51,52	corner
$32_{\rm a}$		25 50 24 45		35—37				24 52 24 58	5.0	51,52	}
33		23 15	12	38		$\ddot{69}$	46.0	23 05	2.0	52	'
34		24 40	1	3 8		70		23 05	1.2	52 52	
35		24 10	4	38				- 0		-	
- 1	,				•	•		•	,	,	1

Table 12. Continued.

	19	00		T		19	00 .		T				
№	α	δ	s	Ch.	Rem.	N_{2}		α	δ	s	Ch.	Rem.	
						1	[] 		<u> </u>		[
-	h m	240554					h	m					
71		$24^{0}55'$ $25~00$	6.2	52	}	110 111			$23^{0}15$ 24 15		122 123		
7 2	51.8	24 18	2.8	5 2	\mathbb{K}	112			24 55		123	corner	
7 3	52.5 52.6	24 35 23 55		53	S	113		43.6		6	127		
74	58.3		0.8			114 115		47.3 51.2	$\begin{vmatrix} 23 & 05 \\ 25 & 00 \end{vmatrix}$	$\begin{vmatrix} 2 \\ 4 \end{vmatrix}$	127 127		
,,	59.0	23 08	2.2	53	 	116	17	02.2	23 35	29	129	. •	
75 76	7 00.2 0 0 .5		2.5 1.2	53 5 3		117		12.7 14.9		12	130		
77	08.0	24 50	2.0	54		"		15.6	23 50)	
78 79	14.5	23 30	7.	55 55	-	118 119		20.0		$\begin{vmatrix} 21 \\ 2 \end{vmatrix}$	131		
80	20.7	24 45 25 00	5 3	56		120		36. 0 37 .8		3 3	133 133		
81	22.9	25 00	1	56		121		37.5	23 10	Q	133	}	
82 83	24.0 28.7	$\begin{array}{ccc} 23 & 05 \\ 23 & 50 \end{array}$	6 5	56 57		122		39.6 48.4) 	
84	31.6	23 10	11	58	1	١,,		49.1	24 00	19	135	}	
. "	35.3 35.6		2	58	f	123 124		51.3 51.3	$\begin{vmatrix} 23 & 15 \\ 24 & 00 \end{vmatrix}$	4 7	135 135		•
86	39.6	25 00	5	58		125		52.7	23 20	3	135		
87	52.0	24 20	5	60		126		56.4	23 15	5	136		,
88 89	57.1 8 19.2	23 00 24 55	$\begin{array}{ c c c c }\hline 7 \\ 12 \end{array}$	61 63] 	127 128	18	$\begin{array}{c} 06.5 \\ 16.4 \end{array}$	23 50 2 3 50	18	137 138		
90	28.0	24 40	3	65		129		22.9	23 15)	
91 92		24 25 23 50	8 3	65 65		,	;	22.2 23.6		36	139	ì	
93	46.2	23 55	18	67		130		29.8	24 20	1	140		
$ {94}$	48.4 40.5	24 25 24 00	5	67)	131 132		31.3 35.6	$\begin{vmatrix} 24 & 30 \\ 25 & 00 \end{vmatrix}$	3 5	140 140,141		
95	8 50.9	25 00	$\frac{3}{6}$	67		133		36.4	23 10		140,141		
		23 35	27	79		134		44 .2	23 08	2.2	141	,	
9 7 98		24 55 24 15	18 12	79 79		135		44 .0 46 .5		24.	141,142		
99	40.4	23 30	8	81		" "		47. 3	25 00			∫	
	11 16.4 16.4	23 50 24 30	12	86	}	136 137		51.2 59.6	23 05 23 10	11 8	142 143,144		
101	20.7	24 00	8	86	"	138	19	03.3	24 00	6	144		
	11 59.3 12 01.5		18	91		139 140			$\begin{array}{ccc} 24 & 00 \\ 23 & 05 \end{array}$	3 5	144 144		
n n		23 10	10	91		141		08.4	24 50	5	144		
103	13.1	23 05	10	93)	142		09.1	23 40	3	145		
1 04	14.5 15.3	23 20 24 20		-	K	143 144		11.3 14.9	23 40 23 40	3	145	}	
"	14.5	24 00	9	93	}	,,		16.0	23 10		145,146	}	
,,	16.0 13 17.8	24 00 25 00			K	" 1 4 5			23 05 25 00	3	147	J	
105	21.5	24 50	18	101	}	146		26.5	23 10	3	147		
106	24.0	23 15	7	101		147		24.4	$23 \ 35$	40	146)	
107 108	13 36.4 15 33.8	25 25 24 15	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	103 118		"		29.1 31.6	24 15 24 5 0	49	147 148		
109	16 06.5	24 00	14	122]	148		29.5	$23 \ 00$	3	147		
,,	09.1	24 10	1 4	100		149	1	32.4	23 05	7	147,148		

Table 12. Continued.

-	190	1900 α δ				ſ	190	00	-		1
№	1 .		s	Ch.	Rem.	№	α	δ	s	Ch.	Rem.
150 151 152 153 154	36.0 39.2 39.6 41.5	24 ⁰ 15' 23 35 23 45 24 50 23 25 24 00	3 2 10 21 18	148 148 148 148,149) }	171 172 173 174 175 176	54.5 59.6 59.6 21 05.5	23°40′ 23°20 23°40° 24°40° 25°00° 24°25	3 6 5 7 7	158 158 159 159 159 160	
" 155 156 "	45.1 44.7 47.6 48.0 47.6 51.3	23 45 25 00 24 00 24 25 24 55 24 20	3	149 149,150		177 178 179 180 181 182 183	11.3 12.0 16.4 16.4 23.6 27.3	24 10 23 50 24 35 23 00 25 00	3 3 4 3 4 14 2	160 160 160 161 161 162 164	
157 " 158 159 160	57.8 59.3 20 00.0 15.3 23.6 24.7	24 00 23 55 23 15	11 54 31 2	151 153 154 154		184 185 186 187 188 189	42.5 44.0 56.4 22 09.5 10.9 11.6	24 00 24 05 23 15 24 55 23 40 25 00	1 2 4 2 9 3	164 164 165 167 167	
161 162 163 164 165 166	32.0 33.5 35.6 36.0 43.0	23 45	16 6 3 13 0.5 1.2	155 155 155,156 156 156	•	190 191 192 193 194	12.0 20.4 31.3 42.9 43.2	23 10 24 50 24 00	7 4 13 6 10	167 168 170 171	}
167 168 169 170	44.5 47.6 51.6	24 35 23 45 25 00 23 00	0.5 18 4 3	156 157 157	corner	195 " 196	50.2 51.6 51.6	24 40 24 20 24 45 24 20	15 9	172 176	

Table 13. Catalogue of Regions of Maximum Stellar Density in the Zone $+24^{\circ}$. s = area; unit of area = 100 square minutes.

№	19 α	000 \$ +	s	Ch.	Rem.	№	α 19	00 +	s	Ch.	Rem.
1 2 3 4 5 6 7 8	13.8 27.2 37.8 41.0 41.2 52.4 53.1	24° 20′ 24 55 23 40 24 40 23 05 25 00 24 05 24 50 24 30	4 14 7 5 3 4 6 8	3 3 4 6 6 6 8 8	}	9 "10 11 12 "	56.0 57.8 57.1 1 02.6 05.5 06.9 06.2	23° 40′ 23 40 23 30 24 20 24 25 24 25 24 05 23 50 23 55	12 9 5 12	8 8 9 9	}

Table 13. Continued.

	190	00					19	00	T	T	
$N_{\!$	α	δ	s	Ch.	Rem.	№	α	δ	s	Ch.	Rem.
-		+						+			
	h m						.				
13		23050′	3	14		57	h m 5 57.1	24052′	2.5	46	
14	58.0	23 30	3	16		<i>5</i> 8		23 22	0.8		
15	2 06.5	24 35	2	17		59	58.0		0.5		
16		24 50	2	17		60	58.7		0.8		
17		24 35	5	19		61	58.9	24 42	0.5		
18		24 30	9	22		62	59.1		2.0		
19		23 30 24 10				63	6 03.2 03.6	24 22	8.2		very strong cluster
"		24 40	15	26	}	64 65	05.8		3.2	46,47 47	
"		24 20				66	06.5		0.5	47	
<i>2</i> 0		24 20	_	07	K	67	07.3		0.5	47	
"	31.6	24 00	5	27	}	68	16.9	24 35	0.5	48	
21	40.0		2	28		69	25.6	23 35	1.0	49	
22	45.5		2	29		70	26.0	24 05	1.0	49	
23		24 35	4	29,30		71	27.0		0.8	49	
24	55.4		31	31	}	72	$\frac{27.0}{29.0}$		0.8	49	
$\ddot{25}$	59.3 4 09.1		4	32	,	73 74	$\begin{array}{c} 28.2 \\ 28.4 \end{array}$		4.0 4.0	49, 50 50	
$\frac{26}{26}$	11.4		3	32		75	30.7	23 18	3. 8	50	
27	14.4	23 00	6	33		76	30.7	24 38	1.2	50	
28	15.3	23 55	2	33		77	34. 9		2.0		
29	16.7	23 10	1	33		78	35.6	24 05	0.8	51	
<i>30</i>	17.5		1	33		79		24 12	0.8	51	
31	18.9		13	33		80		24 02	0.8	51	<u>,</u>
32	34.9	23 25	10	35		81	39.3	23 20	1.0	51	
33 34	37.5 40.4	23 05 23 30	11 5	36 36		82 83	45.0 47.6	23 4 5 23 3 8	0.5 0.5	$\begin{array}{c} 52 \\ 52 \end{array}$	1
35	41.8	23 00	2	36		84	59.6	23 48	0.8	54	
36	42.5	23 55	11	36		85		24 55	0.5	54	
37	43.6		6	36		86		23 40	36.	55	:
<i>3</i> 8	49.5		5	37		87	13.5	24 3 0	7	55	;
3 9	51.6	24 05	2	37		88	14.5	23 55	7	55	,
40	59.6	23 40	24	38,39		89		24 00	2	56	
	5 09.1	24 45 23 00	9	40		90	19.6		4	56	
42 43	10.2	25 00	2 4	40 40		91 92	20.7	24 30 23 55	$\begin{bmatrix} 3 \\ 6 \end{bmatrix}$	56 56	:
44		24 35	6	40		93		24 10	$\begin{vmatrix} 0 \\ 2 \end{vmatrix}$	56	۸.
45		23 00	$\tilde{2}$	40		94	$\frac{25.1}{25.1}$	23 20	3	57	i
46	26.5	23 10	13	42	n l	95	26.9	25 00	2	57	
	28.4	23 15	1)	96	32.8	24 20	6	58	!
47	30.2	24 20	1	42		97	39.6	23 30	4	58	i !
48	32.8	24 30	8	42,43		98	8 01.8		$\begin{vmatrix} 6 \\ 2 \end{vmatrix}$	61	<u> </u>
49	38.9	24 40 24 20	18	12.11		$\begin{vmatrix} 99 \\ 100 \end{vmatrix}$		24 50 24 00	3 3	$\begin{array}{c c} 62 \\ 63 \end{array}$	
n		23 50	10	43,44	(101	16.0	24 00 24 20	3	63	:
3 0		24 20	1	44	'	102	29.1	23 10	3	65	1
<i>51</i>	43.6	25 00	7	44		103	29.8	$23\ 50$	3	65	
52	43.6	2 3 4 0	2	44		104	30.5	23 10	3	65	1
53	46.2	23 40	4	44		105		23 15	4	65	
54	46.9	24 25	2	44		106		23 10	13	67	4
55		25 00	3	45 4 5		107 108	9 29.1	24 30 23 35	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	72 86,87	· •
<i>56</i>	34.9	23 20	1	40	i .	100	11 20.0	40 00	41	00,01	

Table 13. Continued.

											,	· · · · · · · · · · · · · · · · · · ·
٠.	1	000	ŀ	~-		1		19	00			
$N_{\!$	α	δ	S	Ch.	Rem.	№		α	δ	S	Ch.	Rem.
	-	+			l. e			1.50	- 19 -11-			<u> </u>
							١.					<i>;</i>
100	h m	23050	2	91		151	l l	1 m	24 ⁰ 35′	,		
	12 18.2		4	91		151	19				145,	great
		24 20	18	93		n			24 40	60	146,	star-cloud
"		23 50	10	95		n	l		24 35		147	Star-civila
111	12 32.0		4	95	,	150			24 40		147	,
	14 32.7		4	90		152		20.1	23 00	1	147	
	045	OA EE	11	110	}	159		97.6	39 9A			
" 112	15 03.6	23 10	2	114	,	<i>153</i>		20.0	23 30 23 25			
114	22 1	23 55	4	118		"		20.0	23 55	42	147 140	
	16 16.0		6	123		29		99.0	23 33 24 20	4.4	147,148	
115 116		24 40	2	123		"				ŀ		
117		24 00	$\begin{vmatrix} 2 \\ 9 \end{vmatrix}$	123		" 154	ł		24 40 23 30	ļ		K
118	21.5	3 24 50	4	123		104				9	148	}
119		323 30	5	124		" 155		36.7	25 20 24 00	1	148	p ·
119 120		23 40	4	127		156		39.0		1 7	148,149	
121		24 00	3	127		157		41.1	23 45	4	149,149	
122		23 05	3	129		158			24 20	1	149	
123		3 24 00	3	129		159			23 20	1	149	
124		24 40	8	133		160			23 35	7	149,150	
125		324 30	0	155		161			25 00	3	150	
		24 40				162		54.2	23 10	5	150	
77		24 30	42	135		163		56.9	24 45	-	1	
"		24 30	**	100	1			58.5	25 00	13	151	<u>}</u>
"		23 40	1			" 164	20	06.0	23 00	2	152)
126	18 01 5	23 25	2	136		165			24 10	8	153	
127		23 50	1	i		166			25 00	1	153	
	100	24 15	14	137,138	}	167			25 00	3	153	
128	18.9	23 35	5	138	,	168		18.9		1	153	
129	18.9	24 30	4	138		169		10.0	23 20	1	100)
130	27.6	3 23 05	$\frac{1}{2}$	140				20.4	24 00	34	153,154	}
131		23 30	11	140		n	1		24 50	01	100,100]
132		23 00	1	140		170			23 10)
133		23 10	3	140					23 45	33	154,155	}
134		23 55	4	140,141					24 30		')
135		24 28	1.0	141		171		30.9	25 00	2	155	
136	40.4	24 28	0.5			172		32.0	23 10	1	155	
137	40.9	23 28	0.8			173		33.1	24 50	8	155	
138		24 00	2.2			174		34.0	23 10	3	155	
139		7 23 32	1.5			175		37.8	24 45	1.2		
140	45.1	L 23 40	14.	142		176			24 50	0.8	156	
141	48.3	3 24 30	3.	142		177		41.1	24 28	0.5		
142	51.2	2 23 50	17.	142		178		41.6	24 42	1.2	156	
143	54.4	L 24 42	1.2	143		179		45.1	23 15	2	157	
144	56.4	L 24 58	0.8	143		180		45.8	24 50	6	157	
145		3 24 50	1.0	143		181			24 35	2	157	
146	57.6	3 24 22	1.2	143	1	182			23 55	2	157	
147	58.7	7 23 35	1.5	143		183		52.8	24 40	2	158	
	19 01.8	3 23 30	1.	144		184		57.5	24 50	3	158	
149	04.0	24 45	21.	144		185	21	01.8	23 45	2	159	
.150		3 24 50	7.	145		186		02.2	23 20	2	159	
	li								.:			1
	И	i	1	1	U		I	l		I	I	l '

№	190	θ δ	s	Ch.	Rem.	№	α	900 ∣ δ	8	Ch.	Rem.
36	a	+	3	On.	100111.	, 12	a	+		0	
	h m			:			h r	n			
187		24°00′			h	203		$1 24^{\circ}3$			
,,		24 50	15	159	 }	204		0 25 0		165	
,,		24 10			J	205		2 23 2		165	
188	05.5	23 4 0	3	159		206		$.5 23 \ 5$		165	
189	06.2	24 30	3	159		207		2 24 3		165,166	l
190		24 50	2	160		,,		$.5 24 \ 4$	\mathbf{o}		(I)
191	11.3	23 10	3	160	•	208	59	$.6 23 \ 3$		166	
192	12.7	24 25	2	160		209		.8 23 4		167	1
193	14.5	23 15	7	160		,,		.5 23 1	5	10.	J
194	18.5	24 50	5	161		210		1 24 4		167	
195	21.5	24 50	3	161		,,		.7 24 3	U	ł]
196	21.5	23 20	3	161	,	211		.6 24 3			
197		24 50	2	163		212		.6 23 1		171	
198	33.8	24 20	1	163		213		.0 23 1		172	
1 9 9	39.6	23 30	4	163		214		.2 23 0			
200		24 30	1	164	1	215			0 8		
201			1	164	e e	216		4 24 2		176	
202			2	164		217	49	.8 24 4	5 4	180	

Table 13. Continued.

5. Discussion of Results.

a) Galactic condensation. In table 14 are given mean values of the difference m_1-m_0 (table 11) for different galactic zones. B is the galactic latitude, n — the number of charts. The probable errors are derived from the internal agreement of the values.

 $0^{\circ} \dots 9^{\circ} | 10^{\circ} \dots 19^{\circ} | 20^{\circ} \dots 29^{\circ} | 30^{\circ} \dots 35^{\circ} | 36^{\circ} \dots 39^{\circ} | 40^{\circ} \dots 59^{\circ} | 60^{\circ} \dots 74^{\circ} | 75^{\circ} \dots 87^{\circ} | 75^{\circ} \dots 87^$ $\pm B$ 25 24 2922 24+0.22-0.02- 0.03 Mean $m_1 - m_0 + 0.10 - 0.10$ +0.07-0.07-0.06 $\pm 0.06 \mid \pm 0.07$ ± 0.08 $|\pm 0.06| \pm 0.06| \pm 0.05|$ ± 0.07

Table 14.

From this table it may be inferred that the change of stellar density with galactic latitude as derived from the Paris Carte-du-Ciel Zone at +24° is in excellent agreement with the results of Van Rhijn¹); the deviations are small and show no systematic character. This may be regarded as a check of the method by which the limiting magnitudes were derived here.

¹⁾ G. P. 27.

b) Obscuration and clustering: generalities.

The fundamental problem of the real nature of the observed irregularities in stellar distribution will now be discussed. In table 11 are given two measures of the irregularity:

the relative obscuration,
$$A = \frac{s_1 \Delta_1}{169}$$
;

and

the relative clustering,
$$C = \frac{s_2 \Delta_2}{169}$$
.

In the case of absorption Δ_1 may be regarded as representing the amount of absorption, which is proportional to the depth of the absorbing matter; the product of depth by area, $s_1\Delta_1$, divided by the total area of the chart, represents thus a quantity to some extent proportional to the average mass of absorbing matter per unit area (per chart). Such would be the meaning of the quantity A were the area of minimum density the only area subject to absorption; in a real case absorption may be present in a less degree on the whole chart, the area noted by us representa maximum of absorption; therefore, no exact physical meaning can be attributed to A, as well as to C; each may be regarded as a measure of the contrastness and irregularity of stellar distribution, A relating to the minima, C — to the maxima of density. A chart covered by a uniform absorbing veil will show no irregularity in the distribution of the stars whatever the amount of the absorption be 1). If nevertheless it may be hoped to get some information on the presence of obscuring matter from the quantity A (maybe C also), i. e. from a study of the irregularity of stellar distribution, the reason for such a hope lies in the purely empirical fact that known extended nebulae — bright or dark — show an extremely irregular structure; such an obscure nebula placed in front of a stellar background would produce corresponding irregularities in the apparent distribution of the stars. Obscure nebulae which cover only a part of the chart may, of course, be detected more easily than extended nebulosities covering the whole chart.

¹⁾ As an example chart 41 may be mentioned, where intense general absorption appears associated with an almost normal chance distribution of the stars.

Another quantity which may serve as a measure of obscuration is the difference $m_1 - m_0$, given in the 6th column of table 11; this difference represents the relative excess of stellar density in a given region, as compared with the average density for the corresponding galactic latitude; it is very convenient for our purposes to measure the density in stellar magnitudes, instead of using the numbers themselves. At the limiting magnitude of the charts the average increase of stellar number per 1 magnitude interval is about $2\frac{1}{2}$, so that, roughly speaking, to $m_1 - m_0 = +1.0$ corresponds a density 2.5 times, and to $m_1 - m_0 = -1.0$ — a density 0.4 times the normal density.

The total effective absorption, a, may be assumed equal to

$$a = -(m_1 - m_0) + f(B) \dots (15),$$

where f(B) is an unknown function of the galactic latitude, B. By removing the obscuring matter the apparent density of stars is increased in the same proportion, as it is by entering table IV of $G.P.27^{-1}$) with the argument $m_1 + a$, instead of m_1 . If f(B) is small or constant, $m_1 - m_0$ may be regarded as a measure of the differential absorption.

In the case of real obscuration the quantity a has the following meaning: it represents the minimum value of the true absorption along the path of the ray, coming from the remotest stars of the chart. In the case of real stellar grouping (clustering) a looses its physical meaning and may be regarded as a purely conventional measure of the relative density of stars.

We now possess two series of numerical data which may help to solve the problem of irregularity of stellar distribution: the measures of irregularity, A and C, and the density excess, m_1-m_0 .

c) Acuracy of $m_1 - m_0$. In section 3 the probable error in m_0 was estimated at ± 0.03 st. mg.; the accidental probable error in N (total number) is of the order p. e. $= \pm 0.674 \ \sqrt{N}$, or with N = 1000, p. e. $= \pm 0.02 \ N$; this corresponds to a probable error in m_1 equal to ± 0.02 st. mg.; the accidental probable error of a difference $m_1 - m_0$ becomes thus:

¹⁾ As table IV of G.P. 27 reaches only limiting magnitude 16.00, for the sake of convenience the table was extended by extrapolation, assuming a constant value of $\delta = \frac{d(\text{Log } N)}{dm}$ for a given B, $\delta_{m > 16.0} = \delta_{m = 16.0}$.

p. e.
$$(m_1 - m_0) = \pm \sqrt{0.03^2 + 0.02^2} = \pm 0.04$$
 st. mg.

Systematic errors in m_0 , depending on a seasonal change of the sensitiveness of the plate, hardly exceed 0.20 st. mg.; the mean differences m_1-m_0 of table 14 show a dispersion of \pm 0.10 st. mg., or a p. e. of \pm 0.07 st. mg.; since in this quantity real deviations of stellar density in different galactic zones are included, the value found may be regarded as a maximum value, and the true probable error in m_1-m_0 , including also systematic seasonal errors, may be estimated at

p. e.
$$(m_1 - m_0) < \pm \sqrt{0.04^2 + 0.07^2} = \pm 0.08$$
 st. mg.

The real dispersion shown by m_1-m_0 in table 11 is much greater and corresponds to a probable error of

$$\pm$$
 0.31 st. mg. (dispersion \pm 0.46 st. mg.).

Moreover, the m_1-m_0 show a systematical variation, adjacent values presenting ordinarily a smooth and gradual change, which is due to systematic deviations of the density in extended regions of the sky; evidently p.e. (m_1-m_0) is less than

$$\pm 0.674 \sqrt{\frac{\overline{\Delta_a^2}}{2}}$$

 Δ_a denoting the dispersion of differences of m_1 — m_0 for two adjacent charts. In this way we found

$$p. e. (m_1 - m_0) < \pm 0.13 \text{ st. mg.}$$

As the major part of this must be due to real variations of density, the above found value, ± 0.08 , may be regarded as confirmed. The accuracy of the differences m_1-m_0 is thus as high as for direct photometric observations of individual stars.

d) Density excess and irregularity of distribution.

On fig. 2a and 2b the quantities m_1-m_0 , A and C are represented graphically; from an inspection of the curves the following preliminary conclusions may be drawn:

1) A and C in the majority of cases apparently depend upon one another; there may be found but very few instances where apparent clustering is not associated with obscuration: it may be suggested that *statistically* both phenomena have a common origin, either in absorption or in the peculiarities of stellar grouping; 2) the relative minima of m_1-m_0 (or of stellar density) correspond to maxima of the irregularity, A and C, and vice versa; thus apparently the factor that reduces the number of visible stars is at the same time the cause of this irregularity of stellar distribution; within the limits of reasonability such a factor may be sought only in the absorption of light in space by irregularly distributed dark matter.

There is a steady decrease of A with increasing m_1-m_0 , or with increasing excess of density; an exception presents only the last value, where for the 7 richest charts the relative absorption is somewhat greater than for the preceding less rich charts; but it must be remembered that these charts (N_2 46, 47, 49, 50, 51, 52, 53) are all placed in low galactic latitudes (B from $+1^{\circ}$ to $+13^{\circ}$) where a high observed density of stars may nevertheless be associated with considerable absorption.

Table 15. Correlation of the Density Excess (m_1-m_0) , the Relative Obscuration (A) and the Relative Clustering (C).

m_1 — m_0	—1.66 —1.20	-1.19 0.80	-0.79 0.40	-0.39 0.00	+0.01 +0.40	+0.41 +0.80	+0.81 +1.34
Number of charts	3	7	21	48	74	20	7
$egin{array}{ll} ext{Mean} & A \ ext{Mean} & C \ ext{$C\colon A$} \end{array}$	0.400 0.097 0.16	0.161 0.053 0.33	$0.103 \\ 0.032 \\ 0.31$	$0.070 \\ 0.033 \\ 0.47$	$0.065 \\ 0.030 \\ 0.46$	$0.038 \\ 0.029 \\ 0.76$	0.067 0.031 0.46

As to the relative clustering, C, its variation is at first parallel to A, but from $m_1 - m_0 > -0.80$ it becomes constant. The range of variation of C is less than the range of A.

To understand better the consequences of the data of table 15, the alternatives presented by the two chief hypotheses alluded at in the Introduction must be stated more precisely.

- 1. Only absorption, no clustering. The maxima of density correspond in this case to more transparent parts of the nebulosity; with increasing absorption (or decreasing $m_1 m_0$) both A and C must steadily increase, beginning from zero, the ratio C:A remaining approximately constant.
- 2. Only clustering, no absorption; positive excesses of densyti are expected where the clustering is especially intense; thus

an increase of C with increasing $m_1 - m_0$ is to be expected; as the apparently "obscured" regions represent in this case only interstices between the clusters, A must vary in the same sense as C.

From table 15 it is obvious that case 2. does not answer the observed facts, whereas case 1. agrees tolerably well with the data of the table. But evidently a mixture of both cases may best account for the observations. We arrive thus at the conclusion that in the real universe

the observed irregularity of distribution of the stars is chiefly due to absorption of light by irregular obscure cosmic clouds, and in a less degree — to a slight tendency of stars to crowd together, or to form real clusters; the slight clustering explains why the ratio C: A increases with the increasing excess of density; for $m_1-m_0<-0.80$ the areas of maximum density are apparently in the majority of cases only holes in the dark nebulosity, through which the stars of the background are allowed to shine with a comparatively small loss in brightness; for more transparent regions, with $m_1-m_0>-0.80$, approximately one half or more of the rich areas may also represent such holes, whereas the remaining areas are real clusters or condensations of stars in space. Beginning from $m_1-m_0>-0.80$ the decrease of the part of C due to the apparent clusters (holes in the nebulosity) is apparently counterbalanced by the increase of the other part of C originating from the real clusters, the resulting value of C remaining thus constant.

As the irregularities in stellar distribution seem to occur more or less almost in every region of the sky, we are led to the conception of an absorbing veil covering apparently the whole sky and transmitting only a part of the light of stars placed behind; the veil reveals itself only by some local condensations or holes which produce non-uniform absorption and give origin to the apparent irregularity of distribution of the stars. Were the veil removed, the density of stars would be much greater than the observed, and the distribution upon a small area would be probably very similar to a chance distribution but for the real clusters, sometimes disturbing the distribution. Let us call the imaginary density of stars, obtained after removing the absorbing matter, the *ideal density*, and the correspond-

ing effective limiting magnitude — the *ideal magnitude*, $m_i^{\ 1}$). In the case of apparent clusters the effective limiting magnitude (m'') has in m_i an upper limit, corresponding to full transparency; on the contrary, the effective limiting magnitude of the sparse regions (m') is subject to no restriction; it may be expected therefore that m' must attain much greater absolute values and must show a greater dispersion than m''; this is confirmed by the data contained in the two last columns of table 11. The differences $m'-m_0$ and $m''-m_0$, or the density excesses of the obscured and the rich areas respectively there given, crowd around their mean values with the following dispersion:

 $m'-m_0$ (obscuration), mean =-1.39 st. mg.; dispersion = ± 0.83 st. mg. $m''-m_0$ (clustering), = ± 0.93 , ; = ± 0.59 , ,

For comparison the dispersion of m_1-m_0 , or of the density excess of the whole chart, may be mentioned:

 \pm 0.46 st. mg.

The dispersion of $m''-m_0$ is unexpectedly small, especially if it is taken into account that a large proportion of the "clusters" cover an area of only 200 square minutes or less, where chance deviations of the density may have strongly influenced the individual values of m'', without perceptibly affecting the whole chart.

e) Galactic distribution of obscuration and clustering. Table 16 contains data relating to the galactic distribution; the mean values were derived from all data of table 11, using also the doubtful ones (which are bracketed in table 11); for comparison are given in parentheses mean values computed without using the doubtful data of table 11; the difference of both sets of data is but slight.

The table shows decidedly a decrease of A and C, as well as of the ratio C:A, with the increasing galactic latitude; thus both obscuration and clustering have a galactic concentration of the same character as revealed by the stars. The behaviour of the ratio C:A indicates that real clustering plays a more important part in low galactic latitudes than near the galactic poles. The fact that the maximum of absorption occurs in the galactic zone $10^{\circ}...19^{\circ}$, instead of the galactic equator, is due to the effect of the well-known Taurus region of obscuration; near

¹⁾ Taken from G.P. 27, table IV, with the ideal density as argument.

the galactic pole ($B = 75^{\circ} ... 87^{\circ}$) a secondary maximum of obscuration is indicated, due evidently to real absorption.

Table 16. Galactic Distribution of the Relative Obscuration (A) and Relative Clustering (C).

$\frac{\pm B}{\text{(gal. lat.)}}$	0090	100190	200290	300350	360390	400590	600740	75º87º
Mean A	0.111 (0.111)	0.140 (0.140)	0.071 (0.067)	0.088 (0.078)	0.054 (0.035)	0.050 (0.033)	0.02 3 (0.019)	0.057 (0.050)
Mean C	0.070 (0.070)	0.053 (0.053)	0.0 33 (0.0 32)	0.028 (0.025)	0.029 (0.025)	0.012 (0.007)	0.009 (0.006)	0.012 (0.010)
Ratio $C:A$	0.63 (0.63)	0.38 (0.38)	0.46 (0.48)	0.32 (0.32)	0.54 (0.71)	0.24 (0.21)	0.39 (0.32)	0.21 (0.20)
Number of charts	25	24	29	22	24	22	17	17

From a smoothed curve the galactic condensation (ratio of $B=0^{\circ}$ to $B=90^{\circ}$) comes out as 3.6:1 for the obscuration, and as 8:1 for the clustering; the galactic condensation of stars to limiting magnitude 14.5 (photographic) is 7:1, according to Van Rhijn. Since obscure nebulae can be found only if they are nearer to us than the background of stars, and since the apparent galactic condensation is chiefly a function of the distance, it is not surprising that obscure nebulae show a smaller condensation than stars of the background against which the nebulae are projected; on the other hand, the real galactic condensation of the absorbing matter may be also somewhat less pronounced than for stars. The galactic condensation of clustering is greater than for stars of the same limiting magnitude; if it is taken into account that the percentage of real clusters increases towards the galactic equator, the galactic condensation of real clustering must be much greater than 8:1, and thus surpasses considerably the galactic condensation of stars.

There is a circumstance which makes the galactic condensation of A appear greater than it really is. The possibility of detecting an obscured region depends highly upon the number of stars on a chart; the greater the number (N), the smaller the area or contrast of obscuration which can be found with certainty: if N is small, the excess in the distribution of densities produced by a small area cannot be distinguished from chance devi-

ations. Since N increases towards the galactic equator, obscured areas in low galactic latitudes are more easily detected than in high latitudes. To obtain an idea of the apparent increase of the galactic condensation of A, the different galactic zones must be compared under equal conditions.

From a consideration of the obscured regions actually found the following *minimum* values of A which can be detected were estimated (smoothed values):

Below N=400 the conditions of detecting are very bad; therefore all charts with the true limiting magnitude, m_0 , less than 14.40 were rejected; there remained 117 charts having $m_0 > 14.40$, for which near the galactic poles N approached 400. For N=400 the minimum value of A is 0.12; all A less than this value were also rejected; table 17 gives the galactic distribution of the material restricted in this way.

Table 17.

Galactic Distribution of Relative Obscuration.

Only A > 0.11 and charts with $m_0 > 14.39$ used.

$\pm B$	$0^{0} \dots 19^{0}$	$20^0 \dots 39^0$	$40^{0} \dots 59^{0}$	$60^{\circ} \dots 87^{\circ}$
$\begin{array}{c} \textbf{Mean} \ \textbf{\textit{A}} \\ \textbf{Number of} \end{array}$	0.098	0.031	0.039	0.046
charts	33	44	19	21

In this table all galactic zones are placed in equal conditions of observation; it may be remarked that the rejection of small values of A is to some extent equivalent to the use of the nearest cosmic clouds only, as such clouds will produce the greatest apparent absorption (defect of density) and will have the greatest angular dimensions, i. e. the nearer the clouds, the greater the corresponding value of A will be. Table 17 gives for the galactic condensation of A a value near 2:1; the secondary maximum near the galactic pole is more pronounced than in table 16 (where for the joined zones 60°—87° the maximum disappears, the mean value being 0.040); it may be suggested that the secondary maximum is due to relatively near clouds. The crowding

of dark nebulae towards the Milky Way is thus confirmed by table 17, the somewhat smaller value of the galactic condensation being in all appearance due to the relative nearness of the selected objects.

The true galactic condensation of relative obscuration projected against a background of limiting magnitude 14.5 must lie between the two values found above, 3.6:1 and 2:1, and may be safely assumed equal to 3:1.

As to the possibility of detecting relative clustering, it depends in a far less degree upon the number of stars per chart, and practically all charts and galactic zones may be regarded as comparable with one another in what concerns the value of C.

f) Structure of the universe. The subsequent considerations are preliminary; a study of the distribution of stars of different magnitudes in a great number of obscured and rich areas is needed to solve the problem of the real nature of these areas, and finally the study of proper motions, spectra, etc. will decide the question; but this is a work of futurity; in the meanwhile a working hypothesis based on evidence already gained may prove to be useful.

It appears that almost in every region of the sky indications of absorption of light by dark cosmic clouds can be found; everywhere amongst the stars of our galactic universe are spread patches of dark nebulosity; as indicated by the galactic condensation, the geometry of the universe of dark nebulae is similar to the geometry of the universe of stars; whether the shape of both universes is identical, or whether there is some difference in the shape of surfaces of equal density, cannot be decided from the material available.

A vague estimate of the amount of absorption can be made in the following way. Let us assume formula (15) as representing the total absorption, a; our assumption is justified by the circumstance that the difference m_1-m_0 is almost exclusively accounted for by absorption; the function f(B) is to be determined.

We will admit the following linear relation between the total absorption, a, and the relative obscuration, A:

$$a = kA$$
 . . . (16), where evidently

k > 1, as the observed contrast of absorption, A, represents only a fraction of the total absorption. The value of k depends upon

the typical structure of the obscure nebulae and cannot be predicted in advance. On the basis of the hypotheses represented by formulae (15) and (16) and with the aid of the data contained in tables 15 an 16 the function f(B) may be determined by successive approximations. Table 18 represents the data in a compact form; the distribution of the excess of density, $m_1 - m_0$, according to galactic latitude is also added.

$m_1 - m_0$		A	N	umber per	Galactic Zo	one	me	an
limits	mean	mean	±0°±19°	$\pm 20^{\circ}\pm 39^{\circ}$	±40°±59°	$\pm 60^{\circ}\pm 87^{\circ}$	f(B), 1st approx.	α, 2nd approx.
-1.661.20 -1.190.80 -0.790.40 -0.39 0.00 +0.01+0.40 0.41 0.80 0.81 1.34	$\begin{vmatrix} -1.0 \\ -0.6 \\ -0.2 \\ +0.2 \end{vmatrix}$	0.161 0.103 0.070 0.067 0.038	5 5 9 15 5	0 1 10 22 35 7 0	0 1 3 8 8 2 0	0 0 3 9 16 6	1.9 1.6 1.2 1.1 1.1 1.1	3.4 2.6 1.8 1.3 0.9 0.5 0.8
	Mea	n A	0.125	0.071	0.050	0.040	_	
$ \frac{1^{\text{st}} \text{ approx., } k = 2^{\text{nd}} \text{ approx., } k = 2^{\text{nd}} \text{ approx., } k = 2^{\text{nd}} \text{ approx.} $			1.1	0.8	0.6	_	_	

Table 18.

From the table it appears that the extreme values of $m_1 - m_0$, below — 1.2 and above + 0.8, occur only in the galactic zone $0^0...19^0$; values of $m_1 - m_0$ between — 1.2 and + 0.8, which are distributed over several zones, were therefore used only for the 1^{st} approximation of the coefficient k; mean values of A were thus plotted against the mean $m_1 - m_0$ as abscissae; the inclination of the straight line drawn through the points gave k = 15 (f(B)) being preliminarily assumed to be constant); the first approximation of f(B), given at the foot of the table for each galactic zone, was computed from

$$f(B) = 15 A \dots (17);$$

this formula follows from formulae (15) and (16) if it is taken into account that for a given galactic zone on the average $m_1 - m_0 = 0$ (see table 14). The second approximation of α (the total absorption) for each $m_1 - m_0$, contained in the last column of table 18, was found according to formula (15) by substituting for f(B) the mean values f(B) = 15 A, contained in the last but one column of the table; these mean values were computed from

the first approximation of f(B) with weights equal to the observed frequency, given in the same table.

The second approximation of k and f(B) was found by plotting the mean values of A (3^d column) against the α (last column) as abscissae; all points except the first fitted perfectly into the straight line

a=15 A (18); thus the second approximation turned out to be identical with the first approximation. How the straight line represents the observations may be judged from the following:

The outstanding first value is of low weight, being based on only 3 adjacent charts in the *Taurus* region of obscuration. It must be remarked that formulae (17) and (18) hold only for mean values of A of a group of charts, having thus only statistical meaning; for individual charts there is no use of applying these formulae.

Formula (17) follows from (18) with $m_1 - m_0 = 0$, i. e. f(B) represents the effective average absorption for the galactic zone B. Table 19 contains a comparison of the observed density of stars with the ideal density, i. e. the density after removing the absorbing matter, according to the numerical data here found.

Gal. Lat	itude mean	absorption,		(lim. magn. 14.5 ptgr.) ideal Ratio				
0°19°	10 ⁰	1.9	500	2600	5.2			
20°39°	30 ⁰	1.1	230	560	2.4			
40°59°	50 ⁰	0.8	120	210	1.7			
60°87°	74 ⁰	0.6	83	120	1.4			

Table 19.

The galactic condensation, defined as the ratio of average densities in the zones 0°...19° and 60°...87° respectively, becomes as follows:

observed condensation = 6.0:1, true condensation = 22:1.

On fig. 2 the broken smooth curve represents the quantity -f(B), or the ideal value of m_1-m_0 which corresponds to zero absorption; the distance between this curve and the observed absorption, m_1-m_0 , is equal to the hypothetical total amount of effective absorption; it is interesting to note that nowhere does the observed m_1-m_0 fall below the theoretical limit; charts 106-112, between $\alpha=14^h0^m-14^h48^m$, approach very closely this limit; it appears that only in this part of the zone no obscuring matter affecting the light of the 14.5 magnitude stars exists.

6. Summary.

- 1. The distribution of stars in the Paris Carte-du-Ciel Zone, $\delta = +24^{\circ}$, has been studied, for which purpose about 250 000 stars were counted; the complete counts are contained in table I.
- 2. About $75\,^{\circ}/_{0}$ of the charts show more or less considerable deviations from a chance distribution, the deviations consisting in the presence of areas of excessively low or high density.
- 3. The irregularity of distribution increases as the relative density¹) of stars decreases; this may be reasonably explained only on the assumption that real absorption of light by irregular cosmic clouds is the chief cause of the irregularity in stellar distribution. Real clustering appears to play a comparatively small part in determining the characteristic features of stellar distribution; a considerable proportion of the areas of relative maxima of stellar density correspond evidently to "holes" in the nebulosity, i. e. to more transparent portions of the latter.
- 4. Table 11 contains a summary of the data used in the statistical discussion; table 12 contains a list of 197 areas of minimum density (maximum absorption), table 13—217 areas of maximum density ("holes" in the nebulosity or real clusters) of which one may feel individually sure; the whole sky may yield about 14 000 objects of each kind; the regions of maximum obscuration cover 46 square degrees or 0.054 of the entire zone, the regions of maximum density 34 square degrees or 0.041 of the zone; outside the regions of maximum absorption less intense or more regular absorption seems to be present almost

¹⁾ As compared with the normal density for the given galactic latitude.

The figures represent the variation of the different data, found in the preceding investigation, along the zone. As abscissae are taken the N_2 -os of the corresponding charts. Certain limiting values of the galactic latitude (B) are also indicated.

The upper curve represents A, the relative obscuration; the 2nd curve from above represents C, the relative clustering; the next curve, m_1-m_0 , gives the

everywhere in the sky¹), very few regions being free of it; of the whole zone only the portion from $a=14^{\rm h}0^{\rm m}$ to $a=14^{\rm h}48^{\rm m}$ seems to show no absorption up to stars of limiting magnitude 14.5 phtgr.

¹⁾ Perhaps there may exist some relationship between the general absorption and the clouds of stationary calcium in space; such a relationship appears highly probable, if the theory of J. S. Plaskett (Publ. of Dominion Astrophys. Observatory, Victoria, vol. II No. 16) is adopted.

relative excess of stellar density, expressed in stellar magnitudes; negative values of m_1-m_0 indicate that the density is below the average for the corresponding galactic zone; positive values — that the density is above the average. The smooth dotted line below represents the supposed *ideal density*, i. e. the density after removing the presumable absorbing matter.

5. The irregularity of stellar distribution increases from the galactic pole towards the galactic equator; thus the dark nebulae, as well as real clusters of stars, show a galactic distribution analogous to that of the stars.

As numerical equivalents of the irregularity two quantities were introduced, A — the relative obscuration, and C — the relative clustering; a definition of these quantities is given in section 4, and further explained in section 5.

As measured by these quantities, the galactic condensation of relative obscuration equals 3:1, and the galactic condensation of relative clustering is 8:1.

6. On the assumption of a linear relation between the total absorption and the relative obscuration, an assumption supported by the observational data, the average effect of obscuration in different galactic zones is estimated as follows:

were the obscuring matter removed, the number per square degree of stars from the brightest to magnitude 14.5 photographic would appear greater than the actually observed number in the following ratio:

gal. latitude
$$\pm 0^{0}...\pm 19^{0}$$
 $\pm 20^{0}...\pm 39^{0}$ $\pm 40^{0}...\pm 59^{0}$ $\pm 60^{0}...\pm 90^{0}$ ratio 5.2 2.4 1.7 1.4

7. The distribution of the average density of stars according to galactic latitude, as derived from the Paris charts here discussed, is in fair agreement with the results of Van Rhijn (G.P. 27).

Table I.

Counts of Stars made by Miss M. Lukk on the Charts of the Paris Carte-du-Ciel Zone $-\!\!-\!24^\circ$.

The charts are printed in the order of increasing right ascension.

The rectangular coordinates are reckoned from the centre of the chart; the unit is 10' of arc.

The orientation is such as in an inverting telescope.

The printed numbers give the counted number of stars (stardensity r) within squares $10' \times 10'$. However, when the total number on a chart approaches or surpasses 4000, the chart is divided into 4 quadrants, and the numbers are given for squares $5' \times 5'$.

At the head of each scheme of a chart are given: a, the right ascension, and B, the approximate galactic latitude of the centre; N, the total number counted; w_1 and w_2 , the "weights" or the inverse probabilities of the positive excess in the ascending and descending branches respectively of the observed distribution of densities; s_1 — the total area of the regions of minimum density found on the chart, in units of 100 square minutes, and δ_1 — the average star-density of these areas; s_2 — the total area, and δ_2 — the average star-density of the regions of maximum density.

On the schemes of the charts the densities of the regions of excessively low density are printed in heavy type; the densities of the rich regions are printed in italics.

Besides each chart the distribution of densities, n(r), is given; obs. denotes the observed distribution, theor. — the most probable chance distribution.

No. 1.
$$a = 0^{h}0^{m}$$
; $B = -38^{0}$. $N = 771$; $w_{1} = 5$; $w_{2} = 6$. $s_{1} = -$; $\delta_{1} = -$; $s_{2} = -$; $\delta_{2} = -$

-	-6 -	5 -	-4 -	<u>-3</u> -	<u>-2</u> -	-1	0 -	+1-	+2 -	 -3 -	 -4 -	 - 5 -	 -6	<u>+</u>
-6	2	3	1	0	7	6	2	5	6	5	3	6	1	' ~
— 5	4	0	5	5	6	5	7	8	4	4	4	5	3	
-4	5	14	6	3	5	5	2	5	3	9	5	2	5	
-3	6	2	4	2	2	9	3	5	5	4	5	9	3	
-2	5	3	6	2	4	3	4	6	4	5	3	9	4	
-1	2	6	5	3	0	6	4	2	10	2	5	6	5	
0	6	5	4	8	6	1	6	5	2	2	1	4	2	
+1	7	6	8	9	4	4	3	1	4	1	4	3	4	
+2	4	3	6	5	4	4	7	5	6	3	1	6	3	
+3	6	5	7	7	6	4	6	3	6	6	2	7	4	
+4	3	7	5	10	5	4	3	2	4	5	6	2	5	
+5	1	3	7	9	5	9	6	4	5	4	4	2	2	
+6	3	3	6	7	5	2	9	10	3	4	7	3	2	
+	-δ													

r	obs.	n(r) theor.				
0	3	1.8				
1	8	8.1				
2	21	18.2				
3	24	27.6				
4	29	31.7				
5	32	29.0				
6	26	22.3				
7	11	14.4				
8	3	8.1				
9	8	4.2				
10	3	1.9				
≽11	1	0.9				

No 2. a = 0^h8m; B = -38⁰. N = 918; −

_	-6 -	-5	-4 -	-3 -	-2 -	-1	0 -	 1 -	+2 -	 - 3 -	+4 ·	+ 5	+6	. 4
6	6	3	6	4	6	2	4	5	5	4	5	4	2	'
-5	4	6	10	4	5	4	9	7	4	7	4	6	7	
-4	2	8	7	5	8	8.	4	6	5	8	3	7	3	İ
-3	. 9	5	7	6	3	2	4	8	2	7	6	5	5	
-2	9	4	4	7	6	4	7	2	3	4	6	11	2	
-1	9	5	4	4	4	6	7	8	9	4	6	5	6	
0	7	2	4	4	5	6	6	3	10	5	9	5	5	
-1	5	9	7	5	3	5	2	4	2	4	5	9	7	
-2	6	6	8	3	3	3	5	6	3	5	7	7	11	
-3	7	4	2	6	6	8	4	8	3	2	4	7	3	
-4	3	7	6	6	6	4	7	7	7	9	5	3	1	
- 5	4	4	5	2	8	4	8	9	5	6	14	10	5	
-6	3	5	7	6	7	4	4	3	7	7	5	4	4	
	4			-										ı

	n(r)								
r	obs.	theor.							
0	0	0.7							
1	1	3.9							
2	13	10.6							
3	17	19.5							
4	34	26.5							
5	27	29.1							
6	25	26.5							
7	25	20.6							
8	11	14.0							
. 9	10	8.3							
10	3	4.6							
11	2	2.3							
\geqslant 12	1	1.6							

No. 3. $\alpha = 0^{\rm h}16^{\rm m}; \ B = -38^{\rm o}. \ N = 871; \ w_1 = 60; \ w_2 = 10\,000.$ $s_1 = 4; \ \delta_1 = 0.8; \ s_2 = 21; \ \delta_2 = 9.9$

-	-6 ·	— 5	-4	3 -	2	-1	0	+ 1 -	 2 -	 -3 -	+4 -	+5	+6	بد_	r	$\mid n$	(r)
6	3	2	5	6	5	5	6	3	1	4	3	7	5	$+\alpha$		obs.	theor.
— 5	4	6	2	3	6	3	4	5	3	3	2				0	2	1.0
												0	3	l	1	9	5.2
-4	6	3	5	4	4	4	7	7	7	6	4	5	4		2	12	13.0
-3	2	5	3	3	1	5	3	2	8	5	4	6	2		3	27	22.5
-2	8	3	8	6	6	10	6	2	1	ġ	1	9	8		4	25	28.8
-1	4	5	3	3	4	7	2	3	4	8	1	8	2		5	2 6	3 0.0
0	6	3	8	5	3	2	4	2	5	6	5	8	4		6	22	25.4
															7	12	18.7
1	7	8	4	5	8	4	1	7	1	0	8	1	6		8	20	11.9
+2	6	12	15	9	5	4	7	8	6	5	5	5	2		9	5	6.6
+3	9	6	4	3	8	4	4	5	3	3	5	5	6		10	2	3.4
+4	5	3	4	7	4	6	3	4	5	6	5	3	7		11	1	2.6
+5	12	8	8	12	8	8	12	4	6	3	7	4	12		12	5	0.7
+6	7	8	11	8	9	10	8	3	6	6	5	1	9		≽ 13 ∣	1	0.4
+	δ														I and the same of		

No. 4. $\alpha = 0^{\rm h}24^{\rm m}; \ B = -38^{\rm o}. \ N = 895; \ w_1 = 100; \ w_2 = 50.$ $s_1 = 11; \ \delta_1 = 2.2; \ s_2 = 7; \ \delta_2 = 9.4$

 $+\alpha$

_	<u>-6-</u>	<u>-5</u>	<u>-4</u>	<u> </u>	<u>-2 -</u>	-1	0 -	 1	+2	+3	 4 -	+ 5	+6
— 6	4	6	5	7	6	3	4	4	6	6	5	5	4
— 5	0	4	5	7	7	2	6	6	7	11	8	5	5
4	5	5	4	4	4	3	4	3	10	6	5	3	4
3	3	4	3	3	4	4	6	9	4	6	8	9	7
2	8	6	4	6	0	3	4	4	6	10	13	10	8
1	5.	4	7	8	8	3	2	3	6	8	5	5	5
0	8	3	3	3	5	2	6	9	5	4	9	8	3
+1	2	5	7	0	5	4	8	2	2	7	5	6	4
+2	8	3	10	2	5	5	3	3	9	3	2	6	9
+3	6	4	6	4	4	2	3	4	8	10	6	3	1
+4	2	8	6	10	9	7	3	4	3	0	5	2	10
+5	5	7	7	8	5	8	8	8	10	8	5	4	7
+6	2	6	5	8	5	7	3	3	4	8	3	4	5
+	δ						.*						

r		(r) theor.				
0	4	1.0				
1	1	4.5				
2	12	11.8				
3	25	21.0				
4	29	27.7				
5	27	29.6				
6	21	26.1				
7	13	19.9				
8	20	13.1				
9	7	7.6				
10	8	4.0				
11	1	2.0				
12	0	0.9				
≽ 13	1	0.6				

No. 6. $a = 0^{\rm h}40^{\rm m}$; $B = -39^{\rm o}$. N = 554; $w_1 = 280$; $w_2 = 70$. $s_1 = 20$; $\delta_1 = 0.9$; $s_2 = 12$; $\delta_2 = 6.7$

3 3 5

3

+6

 $+\delta$

4

3 7

-	-6-	-5 -	-4 -	<u>-3</u> -	<u>-2</u> -	-1	0 -	 1 -	 - 2 -	+ 3 -	 4 -	 1 5 -	 6	$+\alpha$	r	n	(r)
— 6	1	3	4	4	0	1	3	7	5	3	1	2	0	, , u		obs.	
-5	1	3	1	2	5	7	2	8	7	3	6	2	0		0	8	6.3
-4	4	4	2	1	2	4	4	4	4	4	4	5	1		1	32	20.9
															2	31	34.0
-3	2	2	5	2	2	4	3	1	1	3	1	2	3		3	27	37.5
-2	5	6	8	5	1	1	1	1	3	4	1	5	2		4	23	30.8
-1	3	4	5	1	4	7	2	3	3	2	1	2	2		5	18	20.0
0	2	5	1	1	3	6	2	5	2	0	1	2	2		6	18	11.1
															7	8	5.2
+1	3	5	. 1	1	3	3	3	4	0	2	2	1	1		8	3	2.1
+2	6	1	8	3	4	7	1	1	1	3	5	4	2		≥9	1	1.4
+3	1	2	3	3	4	7	5	3	2	2	1	6	0				
+4	3	9	6	6	6	3	4	3	6	6	3	5	3				
+5	6	5	7	6	5	0	4	6	2	1	2	4	1				
+6	2	4	0	2	6	5	5	6	7	6	4	6	6				ı
+	8													ı	I		

No. 7. $a = 0^{h}48^{m}$; $B = -39^{o}$. N = 783. —

_	-6	-5	-4	3 -	<u>-2</u> -	-1	0 -	+1-	+2	+3 -	+ 4-	+ 5 -	+6	. +α
-6	3	1	9	5	4	4	4	3	6	5	4	3	2	' "
-5	0	3	4	8	3	4	0	6	6	0	3	3	3	ĺ
-4	3	2	2	5	3	2	3	6	5	4	3	4	3	
- 3	3	10	3	7	4	4	7	6	7	5	` 7	2	4	
— 2	5	2	8	11	8	2	5	5	4	2	2	3	4	
-1	6	5	3	4	3	5	3	7	6	4	8	3	4	
0	3	6	2	5	7	4	5	6	4	7	6	1	5	
+1	5	2	2	5	8	4	1	7	5	5	4	6	8	
+2	3	9	11	7	5	4	10	3	8	8	6	8	5	
+3	9	2	7	6	6	6	6	4	2	2	6	4	3	
+4	5	7	6	5	6	7	6	5	6	10	5	1	5	
+5	3	4	5	2	5	1	5	3	1	3	9	5	3	
+6	5	6	4	2	6	4	4	8	8	2	2	1	3	
+	δ													j

r		(r) theor.
0	3	1.8
1	7	7.8
2	19	17.4
3	29	26.9
4	27	31.5
5	29	29.3
6	23	22.8
7	12	14.8
8	11	8.8
9	4	4.5
10	3	2.1
11	2	0.9
≥1 2	0	0.5

No. $a=0^{\rm h}56^{\rm m}$; $B=-39^{\rm o}$. N=1137; $w_1=600\ 000$; $w_2=200$. $s_1=6$; $\delta_1=2.7$; $s_2=35$; $\delta_2=10.9$

 $+\alpha$

_	-6-	<u>-5</u> -	-4	<u>-3</u>	-2	-1	0 -	+1	+2	+3	+4 -	+ 5 -	+ 6
-6	2	11	8	6	5	2	2	8	8	5	7	7	2
— 5	4	4	10	3	8	7	7	7	4	9	5	4	2
-4	9	5	5	5	9	6	5	9	5	9	5	3	5
-3	11	3	5	11	2	9	10	10	9	10	10	7	9
_2	4	4	3	9	10	10	10	4	8	10	5	2	8
—1	6	11	7	4	8	6	11	5	7	8	11	9	3
0	2	10	14	8	9	7	6	5	9	10	7	8	3
+1	9	10	6	5	7	4	10	13	3	<i>13</i>	6	2	2
+2	12	7	3	3	9	5	8	9	10	10	7	4	2
+3	5	6	6	7	1 8	3	9	13	7	2	5	5	6
+4	2	12	6	14	2	10	8	11	3	8	4	9	1
+5	6	9	16	8	8	9	6	2	6	4	4	4	4
+6	4	4	4	13	4	9	5	7	10	7	4	2	3

r		(r) theor.
$\begin{array}{c} 0\\1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\\geqslant 16\\\end{array}$	0 1 16 12 20 20 14 17 15 20 17 7 2 4 2	0.2 1.4 4.5 10.4 17.3 23.3 26.0 25.1 21.1 15.9 10.6 6.5 3.7 1.8 0.9 0.4 0.4

No.
$$\alpha = 1^{\rm h}4^{\rm m}$$
; $B = -39^{\rm o}$. $N = 820$; $w_1 = 360$; $w_2 = 2000$. $s_1 = 9$; $\delta_1 = 1.2$; $s_2 = 17$; $\delta_2 = 9.5$

_	-6 -	- 5 -	-4	-3	-2	_1	0	+1	+2	+3 -	 4 -	+ 5	+6	<u></u>
6	5	2	4	3	7	8	2	4	9	3	2	4	7	$+^{\epsilon}$
— 5	1	3	1	5	6	5	2	5	4	0	5	5	6	
4	3	5	7	3	6	8	6	5	5	4	6	4	1	
3	6	9	9	7	3	3	4	8	0	4	2	4	6	
-2	3	8	5	2	6	4	5	5	8	7	3	4	10	
-1	5	3	8	8	11	4	3	10	8	10	9	4	2	
0	4	4	6	3	6	12	7	11	6	4	8	4	4	į
+1	1	2	4	3	7	4	7	5	10	6	8	6	3	İ
+2	3	3	7	7	9	10	6	8	14	11	4	2	5	
+3	4	7	4	8	8	9	6	6	4	2	5	4	3	
+4	7	1	3	4	4	6	8	5	2	3	3	2	2	
+5	3	5	5	4	3	1	2	3	4	3	2	1	2	
+6	2	2	7	2	4	2	4	5	1	1	0	4	0	
+	$\cdot \delta$													I

r		(r) theor.
0	4	1.4
1	8	6.4
2	20	15.8
3	24	25.0
4	33	30.0
5	20	29.9
6	17	24.0
7	13	16.9
8	14	9.9
9	6	5.4
10	5	2.7
11	3	1.2
12	1	0.4
13	0	0.1
≥14	1	0.05
j '	,	

N₂ 10. $a = 1^h 12^m$; $B = -39^o$. N = 645. —

	-6 -	-5 -	-4 -	-3 -	_2 -	-1	0 -	 	 -2 -	- 3 -	 4 -	+ 5 -	+6	⊥~
6	3	6	6	2	2	4	4	4	5	5	3	10	2	$+\alpha$
— 5	3	6	3	6	4	8	7	2	0	4	5	3	7	
-4	5	8	5	4	6	1	5	5	5	3	5	5	3	
-3	4	5	5	3	7	3	2	5	3	4	6	5	4	
2	4	11	3	2	6	5	1	2	1	3	3	4	5	
-1	3	5	3	4	2	9	3	2	3	8	4	5	4	
0	4	5	8	1	2	3	3	2	2	4	5	2	8	
+1	2	3	4	2	2	1	0	5	6	3	5	3	3	ļ
+2	4	6	5	3	1	2	2	4	4	3	3	6	4	
+3	3	4	3	0	3	3	3	3	4	2	3	7 .	4	
+4	5	3	2	5	1	3	2	4	3	2	8	3	2	
+ 5	3	2	4	6	3	8	4	7	3	3	3	3	7	
+6	3	3	4	2	1	2	2	3	7	3	5	4	4	
+	8												احسد	ı

r	n(r) obs. theo					
0	4	3.7				
1	8	14.3				
2	27	27.0				
3	47	34.5				
4	3 0	33.0				
5	26	25.5				
6	11	15.8				
7	7	8.7				
8	7	4.2				
9	0	1.8				
10	1	0.7				
≥11	1	0.2				

No. 11. $a = 1^{h}20^{m}$; $B = -38^{0}$. N = 929; $w_{1} = 800$; $w_{2} = 400$. $s_{1} = 8$; $\delta_{1} = 1.1$; $s_{2} = 3$; $\delta_{2} = 7.8$

_	<u>-6 -</u>	-5 -	-4 -	- 3 -	-2-	1	0 -	+1 -	+2 -	+3 -	+4-	+ 5 -	+6	- +α
— 6	9	2	5	3	6	10	6	0	8	3	4	4	4	١٦٠
-5	1	8	6	4	4	5	9	10	0	6	9	4	4	
-4	6	1	7	5	6	2	6	6	8	5	5	4	3	
-3	7	4	5	6	9	8	10	3	7	16	5	4	2	İ
-2	5	7	8	8	14	5	6	6	7	4	6	2	4	
-1	9	5	5	5	2	7	10	7	4	6	4	2	3	
0	2	11	4	10	5	2	5	10	7	7	7	1	5	
+1	6	4	7	10	2	4	4	4	5	7	5	2	6	
+2	7	5	<i>13</i>	7	8	12	4	8	10	7	0	4	2	
+3	7	7	8	8	3	4	8	2	6	8	9	5	5	
+4	4	4	4	12	7	11	5	8	8	4	6	7	2	
+5	5	7	1.	4	4	4	8	4	3	6	6	4	0	
+6	2	3	5	1	3	2	2	4	4	5	7	4	5	
+	δ												احدد	ı

r		(r) theor.
	003.	theor.
0.	4	0.9
1	5	3.8
2	16	10.4
3	9	19.2
4	34	26.2
5	25	29.0
6	19	26.6
7	21	20.9
8	15	14.4
9	6	8.7
10	8	4.9
11	2	2.4
12	2	1.1
13	1	0.4
≥14	2	0.2

No. 12. $a = 1^{h}28^{m}$; $B = -38^{0}$. N = 681; $w_{1} = -$; $w_{2} = -$. $[s_{1} = 9$; $\delta_{1} = 1.6$; $s_{2} = 2$; $\delta_{2} = 9.5$]

-	-6-	- 5 -	-4 -	<u>-3</u>	_2 -	-1	0 -	+1 -	+ 2 -	+3-	+4 -	 - 5 -	+6	$+\alpha$
6	1	2	3	б	4	6	2	3	8	1	3	1	6	"
— 5	2	3	4	6	6	3	2	3	3	6	7	5	8	
-4	4	6	6	7	4	2	3	4	7	6	4	6	1	
3	5	3	4	4	10	9	4	7	3	9	7	5	3	
2	2	6	5	6	3	5	4	1	4	5	6	5	5	
1	3	5	6	3	9	3	2	3	2	7	6	4	7	
0	1	7	6	4	3	5	4	4	4	2	4	5	3	
+1	4	4	6	1	2	2	1	5	3	1	4	3	5	
+2	3	2	3	4	5	2	5	2	5	4	2	1	5	
+3	5	5	3	3	7	0	0	4	5	4	3	3	6	
+4	4	2	2	3	2	6	3	3	4	4	2	4	2	
+5	4	0	2	5	5	7	7	3	1	6	3	2	2	
+6	3	5	3	5	3	3	5	5	9	4	2	3	5	
														•

r		(r) theor.
0	3	3.0
1	11	11.9
2	24	24.3
3	3 6	32.5
4	3 0	33.2
5	27	26.9
6	20	17.8
7	11	10.6
8	2	5.4
9	4	2.3
≥10	1	1.5

 $+\delta$

No. 13.
$$a = 1^{h}36^{m}$$
; $B = -38^{o}$. $N = 651$; $(w_{1} = 2.4; w_{2} = 5)$. $[s_{1} = 7; \delta_{1} = 1.1; s_{2} = -; \delta_{2} = -]$

-	-6 -	-5 -	-4 -	-3 -	-2 -	1	0 -	 	 2 -	+3 -	+4-	 -5 -	+ 6
-6	3	2	3	5	5	2	5	3	1	1	8	3	4
— 5	3	5	1	3	8	5	6	3	1	5	6	2	1
-4	4	2	6	8	6	4	3	5	7	5	7	8	3
-3	5	3	5	6	3	5	3	1	2	4	5	6	1
2	4	3	2	2	3	6	4	3	2	6	3	5	3
-1	5	5	2	3	5	2	3	2	7	1	0	1	6
0	7	3	2	7	6	0	4	4	2	4	1	2	4
+1	2	7	6	4	1	2	4	7	5	2	1	7	3
+2	1	6	3	3	2	1	4	3	3	5	3	4	7
+3	4	8	5	4	5	5	6	4	4	5	3	5	6
+4	5	3	3	3	5	2	6	5	2	4	7	3	2
+5	5	2	4	6	6	5	5	5	6	0	2	2	3
+6	2	7	4	6	5	5	4	2	3	3	1	2	1
+	δ											-	

I	r		(r) theor.
ľ	0	3	3.6
ł	1	16	13.7
ı	2	27	26 .4
ı	3	34	34.0
I	4	22	33.1
I	5	32	25.8
1	6	19	16.2
I	7	11	9.2
ł	8	5	4.4
ı	9	0	1.9
<u>`</u>	≥ 10	0	1.1
I			
۱			
ı			

No. 14. $a = 1^{h}44^{m}$; $B = -37^{0}$. N = 673; $w_{1} = 80$; $w_{2} = 350$. $s_{1} = -37^{0}$; $s_{2} = 37^{0}$; $s_{3} = -37^{0}$; $s_{4} = 807^{0}$; $s_{5} = 807^{0}$; $s_{6} = 807^{0}$; $s_{7} = 807^{0}$; $s_{8} = 807^{0}$; s_{8

-	<u>-6 -</u>	-5 -	<u>-4</u> -	-3	_2 -	-1	0 -	+1 -	+2 -	+3-	 4 -	+5 -	+6	$+\alpha$
-6	1	4	7	4	0	2	1	3	2	1	4	8	6	- μ
— 5	2	1	9	7	5	2	6	3	6	5	5	2	5	
-4	4	2	4	5	2	5	3	9	0	7	3	4	2	
-3	5	1	9	5	1	4	5	4	4	3	2	3	5	
-2	5	3	4	4	2	4	4	4	4	7	3	3	10	
-1	2	7	2	5	2	3	2	3	2	3	1	7	12	
0	4	4	7	4	5	2	3	2	2	4	1	4	6	
+1	10	2	2	7	6	1	7	1	4	4	3	4	3	
+2	7	6	6	2	2	1	3	3	1	2	4	7	4	
+3	6	6	4	5	3	3	2	2	4	7	1	5	12	
+4	5	4	3	4	4	7	1	4	5	4	1	6	3	
+5	2	6	6	8	2	9	7	1	7	1	4	4	4	
+6	2	3	6	4	3	1	1	2	4	4	8	2	1	
														ł

r		(r) theor.
0	2	3.3
1	20	12.4
2	30	25.0
3	23	33.0
4	38	33.2
5	17	26.5
6	13	17.3
7	15	10.2
8	3	5.1
9	4	2.2
10	2	0.9
≥ 11	2	0.6

 $+\delta$

No. 15.
$$a = 1^h52^m$$
; $B = -36^o$. $N = 663$.

-	-6	5 -	-4	-3 -	<u>-2 -</u>	-1	0	+1 -	 - 2 -	+3 -	 4 -	 5 -	+ 6	
-6	6	6	6	1	3	3	5	3	9	5	4	4	5	Ī
-5	1	4	4	5	5	4	6	13	4	8	4	4	1	
-4	4	4	5	3	2	2	3	5	4	3	3	1	2	
—3	4	6	4	3	3	6	2	4	4	2	2	3	7	
-2	2	7	7	5	3	4	6	2	2	2	5	7	2	
1	4	8	6	10	3	3	3	6	3	3	3	2	6	
0	4	5	2	4	4	4	2	2	6	2	4	9	5	
+1	3	3	4	1	3	4	4	1	2	2	6	4	3	
+2	10	4	3	2	4	2	2	3	6	3	1	2	5	
+3	5	10	5	4	7	2	3	6	3	4	3	5	4	
+1	3	4	0	3	3	7	1	7	7	3	2	3	4	
+5	2	3	2	5	7	3	7	2	6	1	4	4	6	
+6	2	0	4	4	2	3	2	5	1	6	2	3	1	
+	δ												I	i

r		(r) theor.
0	2	3.5
1	11	13.4
2	31	27.0
3	36	31.2
4	37	33.0
5	17	27. 7
6	17	19.2
7	10	11.6
8	2	6.1
9	2	2.9
10	3	1.2
≥11	1	1.0
l		

No. 16. $a=2^{\rm h}0^{\rm m}$; $B=-36^{\rm o}$. N=523; $w_1=3.5$; $w_2=18$. $s_1=-$; $s_1=-$; $s_2=3$; $s_2=8.0$

-	-6-	- 5 -	-4-	- 3 -	-2-	-1	0 -	 	 2-	 3 -	 4 -	+ 5 -	+6	$+\alpha$
— в	2	3	0	3	1	5	4	2	4	5	4	2	1	1 4
-5	2	1	1	1	2	2	2	0	4	6	7	5	3	
-4	2	3	5	4	4	3	4	4	2	3	3	3	6	
-3	2	9	1	8	7	1	2	6	6	4	6	3	4	
-2	3	0	4	9	1	1	1	2	1	5	0	4	7	İ
1	1	5	8	0	5	2	2	3	3	4	1	7	1	
0	6	4	2	2	3	2	3	4	2	2	4	4	2	
+1	2	2	5	2	3	4	2	2	4	0	2	3	0	İ
+2	2	5	3	5	3	4	1	1	6	2	6	2	3	
+3	3	4	6	2	0	2	4	3	1	4	0	2	3	
+4	2	4	2	2	2	3	3	4	3	0	6	3	3	
+-5	2	6	1	5	5	3	5	4	0	1	2	4	2	
+6	3	1	1	2	8	2	3	3	4	5	2	4	3	
	•		بعد جسب											1

r		$(r) \ \ theor.$
0	11	7.7
1 -	21	23.9
2	42	36.4
3	32	36.4 38.0 29.0
4	29	29.0
5	14	17.9
6	11	9.2
7	4	4.1
8	3	1.6
9	2	0.5
≥1 0	0	0.3
		0.3

+0

No. 17.
$$a=2^{\rm h}8^{\rm m}$$
; $B=-35^{\rm o}$. $N=852$; $w_1=12$; $w_2=70$. $s_1=7$; $\delta_1=1.7$; $s_2=8$; $\delta_2=11.0$

-	<u>-6 -</u>	<u>-5 -</u>	-4 -	- 3 -	<u>-2 -</u>	-1	0 -	 -1 -	 2 -	 -3 -	 4 -	 - 5 -	 6	. + 0
-6	3	2	5	3	3	4	3	7	3	8	5	8	5	' `
-5	8	3	7	3	6	2	3	5	6	4	5	2	5	
-4	4	6	3	4	3	4	7	8	6	7	5	5	5	
- 3	4	5	6	4	7	4	8	6	12	3	4	10	7	
-2	6	9	5	4	6	11	2	3	7	4	2	2	4	
-1	6	0	3	4	5	5	10	4	8	5	5	2	5	
0	5	6	7	3	2	5	2	2	1	7	3	5	3	
+1	5	2	6	6	2	8	4	7	2	6	3	4	6	
+2	6	5	6	4	7	7	7	6	2	1	3	7	5	
+3	5	6	6	4	13	8	11	2	5	6	3	1	2	
+4	4	7	5	7	10	4	4	11	7	8	7	3	6	
+5	3	6	7	6	3	11	11	8	6	3	4	6	1	
+6	2	3	3	2	8	4	6	2	3	8	6	2	3	
+	- δ							-	,					ı

r		(r)
,	obs.	theor.
0	1	1.1
1	4	5.6
2	20	13.8
3	27	23.3
4	23	29.3
5	25	30.0
6	27	25.2
7	19	18.4
8	12	11.4
9	1	6.3
10	3	3.2
11	5	1.5
12	1	0.6
≫13	1	0.3
I		

No 18. $a = 2^{h}16^{m}$; $B = -35^{o}$. N = 901. —

-	<u>-6 -</u>	-5 -	<u>-4</u> -	-3-	<u>-2</u> -	<u>-1</u>	0 -	+1 -	+2	+3-	 4 -	 5 -	+6	$\perp + \alpha$
-6	7	5	3	5	4	6	4	6	2	12	0	2	7	7
— 5	2	5	6	8	7	3	7	10	4	7	6	5	3	
-4	7	5	6	5	6	5	7	7	9	4	8	9	3	
— 3	7	8	3	4	6	5	3	6	5	9	7	2	1	
-2	3	4	4	5	4	8	2	3	4	9	10	5	10	
-1	3	7	5	4	4	5	5	4	4	4	4	5	4	
0	10	5	3	6	2	3	3	4	4	6	3	7	5	
+1	4	6	4	5	6	3	5	5	3	7	8	4	8	
+2	7	6	7	8	4	6	4	3	5	5	3	7	3	
+3	3	4	4	6	9	5	5	14	9	7	8	6	5	
+4	3	9	4	8	1	4	8	8	6	7	6	5	3	
+5	4	0	6	9	4	6	3	10	7	5	3	5	5	
+6	2	4	4	6	7	5	6	10	4	7	6	3	4	
1	4										***************************************			j

r		(r) theor.
0	2	0.8
1	2	4.3
2	7	11.6
3	24	20.8
4	33	27.6
5	3 0	29.4
6	23	26.1
7	21	20.0
8	11	13.3
9	8	7.8
10	6	4.2
11	0	2.0
12	1	0.9
13	0	0.4
≥14	1	0.4

No. 19. $a = 2^{h}24^{m}$; $B = -34^{0}$. N = 1734; $w_{1} = 10$; $w_{2} = 200$. $s_{1} = 7$; $\delta_{1} = 5.3$; $s_{2} = 5$; $\delta_{2} = 16.8$

_	<u>-6</u>	<u>5</u>	<u>-4</u>	3	_2	1	0 -	+1	+2	+3	 4 ·	+ 5	+6	
6	5	6	4	6	6	10	7	8	7	10	7	8	8	γa
-5	6	10	4	10	11	13	16	14	1 5	11	11	7	8	
-4	14	6	8	11	13	14	14	8	19	13	10	9	8	
—3	6	5	12	14	8	10	12	13	11	7	11	9	8	
— 2	7	10	9	9	7	11	12	7	17	11	6	5	11	ŀ
-1	8	9	10	12	17	9	5	11	5	12	14	11	7	
0	8	10	9	5	7	7	13	10	9	12	14	9	10	
+1	13	7	13	9	10	10	11	10	13	11	14	11	15	
+2	8	5	13	10	6	11	9	11	13	12	9	16	11	
+3	5	10	13	15	9	12	17	1 8	16	12	20	7	8	
+4	9	8	9	10	11	3	12	16	17	13	12	10	8	
+5	6	7	14	13	7	16	12	14	13	13	7	14	6	
+6	5	8	5	13	19	7	14	17	17	9	7	5	9	
+	δ													l

r	$n(r) \ obs. \mid theor.$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 2 11 10 18 16 17 18 18 12 16 12 3 5 6 1	0.4 1.0 2.8 5.7 9.6 13.9 18.2 20.5 21.4 19.7 17.0 13.4 9.9 6.7 4.3 2.7 1.5 0.8					

No. 20. $a = 2^{h}32^{m}$; $B = -33^{o}$. N = 492. —

-	-6 -	-5 -	_4 -	_3 -	- 2 -	-1	0 -	 	 2 -	 - 3 -	 4 -	 -5 -	+6	
— 6	3	2	2	1	2	6	1	3	2	3	1	6	1	$+^{\alpha}$
— 5	2	5	2	1	4	3	3	3	4	3	1	4	4	
-4	1	3	4	5	6	1	7	1	0	2	2	3	1	
-3	4	2	3	3	6	0	4	2	2	9	2	1	2	
-2	1	5	2	5	3	2	2	2	6	2	3	3	2	
-1	1	4	2	3	4	6	1	3	7	6	5	3	2	
0	4	4	2	1	5	3	1	4	4	4	6	4	2	
+1	5	6	5	5	2	3	1	0	1	0	3	2	2	
+2	2	4	4	4	3	2	1	4	4	2	4	2	1	
+3	2	3	4	1	3	4	1	3	4	0	1	3	1	
+4	5	2	4	6	1	4	2	1	7	2	3	3	2	
+5	8	2	4	3	4	0	2	1	0	1	2	2	4	
+6	4	8	2	3	2	3	3	0	3	3	2	2	3	
_	$+\delta$													

r	$egin{array}{c c} n(r) \ obs. & theor. \end{array}$					
0	8	9.2				
1	28	26.4				
2	43	38.9 38.0 27.5				
3	34					
4	3 0					
5	10	16.2				
6	10	7.9				
7	3	3.2				
8	2	1.2				
≥9	1	0.5				

M 21. $a=2^{\rm h}40^{\rm m}$; $B=-32^{\rm o}$. N=1036; $w_1=100$; $w_2=1400$. $s_1=6$; $\delta_1=1.7$; $s_2=21$; $\delta_2=10.7$

_	-6 -	-5 -	-4 -	-3 -	-2 -	-1	0 -	 -1 -	 - 2 -	- 3 -	 - 4 -	 - 5 -	- ⊢6`		l r		(r)
- 6	3	3	2	7	6	11	2	6	9	6	4	4	0	$+\alpha$		obs.	theor.
-5	14	7	4												0	1	0.4
		-	4	12	11	6	13	6	6	7	5	3	1		1	3	2.3
-4	3	6	4	8	3	10	6	2	6	8	7	2	3		2	10	6.9
-3	8	10	5	12	2	8	10	8	11	10	5	1	4		3	19	14.3
-2	10														4	18	21.4
	10	6	6	10	5	7	7	3	2	9	6	5	4		5	28	26.7
-1	2	9	9	3	3	5	3	8	6	11	6	3	6	ı	6	26	27.3
0	7	1	3	5	5	5	8	6	19	0	11	7	_		7	13	23.9
									13	9	11	7	5		8	- 15	18.3
+1	3	5	11	3	4	5	6	9	9	4	5	5	2		. 9	10	12.6
+2	5	6	10	2	5	7	4	4	11	8	8	б	8		10	11	7.6
·	_									_			_		11	8	4.3
+3	5	4	6	6	<i>10</i>	7	4	5	3	4	5	12	5		12	3	2.3
+1	8	10	4	<i>10</i>	9	7	7	13	3	5	9	4	8		13	3	1.0
+5	3	6	6	5	8	8	5	4	11	10	9	6	3		≥14	1	0.8
+6	8	7	6	5	2	5	5	4	3	5	5	6	4				
+	δ													ı			

No 22. $\alpha = 2^{\rm h}48^{\rm m}$; $B = -31^{\rm o}$. N = 764; $w_1 = 18\,000$; $w_2 = 4200$. $s_1 = 31$; $\delta_1 = 1.5$; $s_2 = 9$; $\delta_2 = 9.2$

_	-6 -	- 5 -	<u>-4</u> -	-3 -	-2 -	-1	0 -	 -1 -	<u>-2</u> -	+3 -	 4 -	 - 5 -	-6
-6	2	1	0	2	3	2	3	1	6	3	7	2	4
-5	1	1	0	2	2	3	2	5	0	5	6	6	1
-4	1	4	4	2	1	3	2	5	3	0	6	5	6
-3	0	5	5	2	2	2	0	5	1	0	5	12	9
- 2	2	5	2	3	3	4	5	2	8	9	8	4	7
-1	4	6	4	4	5	7	3	4	5	4	3	6	5
0	3	2	4	4	3	1	2	10	2	6	5	6	6
- 1	1	3	5	1	5	4	3	7	7	8	6	6	2
-2	4	6	5	4	6	1	10	7	3	11	8	4	8
-3	7	6	7	8	5	3	5	7	5	4	8	9	9
-4	2	8	5	3	1	3	7	4	2	4	12	10	5
-5	6	4	8	7	6	4	5	11	6	7	6	4	7
-6	5	4	8	3	7	4	6	3	6	9	2	2	4
+	δ												

r		(r) theor.
0	7	2.0
1	13	8.5
2	23	18.8
3	20	28.0
4	25	31.9
5	24	28.9
6	21	22.0
7	14	14.2
8	10	8.0
9	5	4 .0
10	3	1.8
11	2	0.8
≥ 12	2	0.5

 $a = 2^{h}56^{m}$; $B = -30^{o}$. N = 854; $w_1 = 8$; $w_2 = 100$. № 23. $s_1 = 17$; $\delta_1 = 1.9$; $s_2 = -$; $\delta_2 = -$

_	-6	 5 -	-4 -	- 3 -	-2 -	-1	0	+1 -	+2	+3-	+4	+ 5 -	+6	•	r		(r)
-6	2	7	4	6	9	6	9	10	6	12	2	2	4	$+\alpha$		obs.	theor.
		-													0	0	1.1
5	4	2	6	8	5	6	6	4	4	7	9	10	3		1	7	5.4
-4	3	5	2	5	8	8	14	5	6	6	9	5	2		2	15	13.2
-3	6	5	2	3	4	3	6	5	5	6	9	6	2		3	26	24.2
-2	3	7	1	1	5	4	6	7	5	6	5	12	5		4	3 0	29.3
1	5	4	4	4	4	3	7	6	6	2	9	6	4		5	26	30.0
0	6	6	2	2	3	3	3	1	5	3	8	12	4		6	30	25.2
															7	12	18.4
+1	6	3	2	4	2	4	4	1	6	5	7	4	7		8	5	11.5
+2	6	6	4	5	5	6	4	1	4	3	6	3	3		9	9	6.5
+3	6	10	5	4	4	1	4	1	6	6	7	4	3		10	4	3.3
+4	14	3	7	5	3	4.	2	5	4	3	7	5	5		11	0	1.5
+5	4	10	7	9	6	9	9	3	4	3	5	7	3		12	3	0.7
+6	2	4	3	8	3	5	5	3	6	5	3	3	4		≥ 13	$2 \mid$	0.6
+	δ													l			

No 24. $a = 3^{h}4^{m}$; $B = -29^{o}$. N = 1143; $w_1 = 1.5$; $w_2 = 15$. $[s_1 = 2; \ \delta_1 = 1.0]; \ s_2 = 4; \ \delta_2 = 14.2$

-	-6	— 5	-4	-3	-2	1	0	+1	+2	+3 -	+4 -	+5	+6	- + c
-6	3	7	4	12	7	6	8	7	5	3	6	3	7	
— 5	14	10	7	16	4	9	10	6	8	12	6	6	4	
-4	6	7	8	7	10	11	6	9	8	6	6	9	7	
-3	8	1	1	5	5	9	4	5	8	7	6	8	6	ĺ
2	9	4	6	9	7	2	8	8	10	6	9	9	11	
-1	10	11	5	2	8	14	6	6	4	5	8	3	5	
0	12	6	6	3	9	<i>15</i>	7	4	6	3	9	8	5	
+1	8	11	6	10	6	5	5	4	7	3	6	6	6	
+2	5	3	7	4	7	7	10	4	8	8	4	7	3	
+3	4	3	4	7	7	10	5	5	4	7	8	5	6	
+4	5	7	8	7	8	5	6	3	5	5	9	9	4	
+5	12	8	11	9	10	9	10	6	2	4	7	8	9	
+6	6	7	10	5	11	12	9	10	3	3	5	5	3	
+	δ												ا	i

r	$\begin{vmatrix} n \\ obs. \end{vmatrix}$	$(r) \ \ theor.$
0	0	0.3
1	2	1.4
2	3	4.5
3	14	10.3
4	16	17.0
5	21	23.0
6	27	25.9
7	23	25.2
8	20	21.3
9	16	16.0
10	12	10.8
11	6	6.7
12	5	3.8
13	0	1.9
14	2	1.0
≥ 15	2	0.5

No. 25.
$$a = 3^{h}12^{m}$$
; $B = -28^{0}$. $N = 862$; $w_{1} = 3$; $w_{2} = 6$. $s_{1} = -$; $s_{1} = -$; $s_{2} = -$; $s_{2} = -$

_	-6 -	-5 -	-1 -	-3 -	- 2 -	-1	0 -	 1 -	+ 2 -	 +3 -	- +4 ·	+5 -	 6		1 r	n	c(r)
-6	3	9	4	0	2	3	1	1	6	6	0	3	5	$+\alpha$		obs.	theor.
-5	2	5	6	5	9	7	7	5	7	5	4	3	2		0	2	1.0
															1	5	5.2
4	3	8	5	4	6	5	5	3	6	5	1	6	3		2	16	13.1
-3	2	2	3	3	5	7	4	5	5	3	4	6	5		3	22	23.1
-2	5	6	9	7	4	5	4	4	6	2	3	5	2		4	21	29.0
-1	2	6	4	12	2	3	8	1	5	4	5	10	5		5	39	30.0
0	7	6	4	4	4	9	3	9	7	2	5	2	6		6	25	25.4
	6	5	5	5	5										7	15	18.7
+1						4	2	5	3	5	3	7	3		8	10	11.7
+2	7	2	10	8	7	3	6	3	7	5	6	5	6		9	7	6.6
+3	6	8	15	9	5	5	5	6	7	3	4	6	5		10	2	3.4
+4	8	3	5	12	5	3	8	6	5	8	5	7	7		11	1	1.6
+5	4	8	1	5	9	12	5	2	6	8	3	4	5		12	3	0.7
+6	4	2	6	6	11	4	7	4	6	6	8	2	7		≥ 13	1	0.6
+	-δ					-						-		l	I		

No. 26. $a = 3^{h}20^{m}$; $B = -27^{o}$. N = 1231; $w_{1} = 380$; $w_{2} = 1.0$. $s_{1} = 17$; $\delta_{1} = 3.1$; $s_{2} = 15$; $\delta_{2} = 11.7$

_	-6-	-5 -	<u>-4 -</u>	-3 -	-2 -	-1	0 -	- 1 -	+2 -	+3 -	 4 -	+5 -	+6	<u>ــــــــــــــــــــــــــــــــــــ</u>
6	5	10	6	12	4	3	9	10	7	10	5	9	8	Τ α
 5	5	8	8	8	4	4	10	11	9	10	6	6	10	
-4	8	7	7	5	7	10	9	4	2	6	8	4	4	
-3	13	10	6	5	9	5	10	3	2	4	4	4	4	
-2	12	9	8	7	4	1	3	0	5	5	6	6	8	
-1	13	16	9	11	3	9	9	3	7	4	7	11	12	
0	12	8	10	5	5	2	8	4	7	5	10	12	7	
+1	13	10	8	6	7	4	4	7	7	9	4	11	12	
+2	11	11	10	14	5	4	7	8	4	2	8	5	5	
+3	9	7	8	6	8	6	5	5	2	8	6	9	10	
+4	14	12	3	7	6	8	10	8	11	10	7	8	10	
+5	7	6	10	7	9	6	10	8	9	7	11	4	8	
+6	8	10	3	5	9	8	9	8	5	4	6	6	9	

r	obs.	$(r) \ \ theor.$
0	1	0.1
1	1	0.9
2	5	3.1
3	7	7.5
4	20	13.7
5	18	19.9
6	16	23.9
7	19	25.0
8	24	22.9
9	17	18.4
10	20	13.5
11	8	8.9
12	7	5.5
13	3	3.1
14	2	1.6
15	0	0.7
≥ 16	1	0.6

No 27. $\alpha = 3^{\rm h}28^{\rm m}$; $B = -26^{\rm o}$. N = 873; $w_1 = 2600$; $w_2 = 3200$. $s_1 = 12$; $\delta_1 = 1.1$; $s_2 = 5$; $\delta_2 = 11.4$

_	-6 -	-5 -	-4 -	-3 -	<u> </u>	-1	0 -	 -1 -	 - 2 -	+ 3 -	 4 -	 1 5 -	+6	. +
6	5	5	5	1	8	7	3	9	6	10	7	3	$\overline{2}$	
-5	4	10	2	3	3	5	8	3	7	6	5	1	1	
-4	4	3	0	4	4	2	3	2	3	5	5	6	9	
-3	2	4	5	1	3	4	6	.8	5	5	6	7	6	
2	4	2	4	1	1	5	1	4	5	7	8	10	4	
-1	7	10	5	3	1	2	0	7	5	1	10	3	7	
0	5	3	7	2	1	2	9	5	3	3	3	14	2	
+1	9	10	4	1	6	5	5	6	4	3	5	5	9	
+2	3	4	7	4	5	4	4	3	5	5	12	11	11	İ
+3	6	8	4	6	6	8	6	4	2	7	5	8	4	
+4	7	6	6	4	10	1	5	5	6	4	5	5	4	
+5	2	9	8	8	6	5	10	4	6	8	10	8	10	
+6	3	8	8	7	4	2	9	1	9	6	4	6	2	
+	δ												است	,

r		(r) $ theor.$
0	2	1.0
1	13	4.9
2	14	12.5
3	19	22.1
4	25	28.6
5	29	29.9
6	19	25.6
7	13	19.1
8	12	12.3
9	9	7.0
10	10	3.6
11	2	1.7
12	1	0.7
≥ 13	1	0.6
<u> </u>		

-	-6-	 5 -	_4 -	- 3 -	-2 -	-1	0 -	 	+2	+3 -	+4	+ 5 ·	+6	$_{ullet}+\alpha$
 6	4	3	6	6	4	4	3	4	9	7	4	6	5	"
5	1	3	4	6	4	9	4	3	1	3	6	4	7	1
-4	4	4	3	4	5	2	3	4	8	5	4	3	3	
—3	6	6	4	6	7	5	3	1	5	4	4	3	2	Ī
-2	3	2	4	4	8	1	2	2	2	3	1	6	11	i
-1	5	3	3	4	1	3	3	3	1	5	5	7	7	ĺ
0	6	2	3	4	4	7	3	5	0	11	5	9	7	
+1	5	3	3	1	4	1	1	6	4	6	4	11	8	
+2	3	2	5	2	4	1	2	2	5	4	4	3	7	
+3	7	7	3	5	3	5	6	4	5	6	6	4	7	
+4	3	5	1	7	5	9	12	2	6	6	6	12	13	
+5	8	12	5	7	5	7	6	6	5	5	4	5	9	
+6	2	5	3	0	4	8	3	6	4	9	3	6	6	

r		(r) $theor.$
0	2	1.8
1	12	7.6
2	13	17.4
3	31	26.9
4	33	31.4
5	24	29.3
6	23	22.9
7	14	15.1
8	4	8.8
9	6	4.5
10	0	2.1
11	3	0.9
≥ 12	4	0.5

No. 29. $a = 3^{h}44^{m}$; $B = -23^{0}$. N = 2135; $w_{1} = 900$; $w_{2} = 440$. $s_{1} = 9$; $\delta_{1} = 5.1$; $s_{2} = 4$; $\delta_{2} = 21.5$

-	-6-	<u>-5</u> -	-4 -	<u> </u>	<u>-2</u> -	-1	0 -	+1	+2-	+3 -	 4 -	 5 -	+ 6	ـــــــــــــــــــــــــــــــــــــ	r		n(r)
6	6	9	11	11	10	18	9	21	16	18	10	7	7	$+\alpha$		obs.	theor.
<u>5</u>	6	5	4	11	13	10	13	13	9	14	14	4	7	•	0-1	0	0.01
4	7	5	13	16	15	15	6	16	20	11	15	8	16		2—3 4—5	1+0 3+3	0.3 0.6+1.5
— 3	8	10	11	14	18	14							8		6-7	5 + 9	
— 2	8					14							12		8—9	•	9.0 + 12.3
1	i					11									10—11	•	15.9 + 17.9
0						17							13		12—13	11+19	19.2+18.6
+1						14									1 4 – 15	20+16	16.5+14.0
•						10							į			•	11.2+-8.4
•													14		i i		5.7+3.9
+3	9				14	19			17	20	12	21	14				2.6 + 1.5
+4	12	19	9	9	7	8	7	8	16	13	16	23	8		22-23	• ;	0.9 + 0.4
+5	2	11	12	15	14	15	5	12	22	11	13	13	10		\geqslant 24	0	0.4
+6	7	4	13	18	10	10	9	10	17	6	14	12	8				
+	- d													l			

 $\begin{array}{lll} \mbox{No.} & a=3^{\rm h}52^{\rm m}\,;\; B=-22^{\rm o}. & N=1306\,;\; w_1=34\,;\; w_2=2.5.\\ & s_1=3\,;\; \delta_1=1.7\,;\; s_2=4\,;\; \delta_2=14.5 \end{array}$

-	<u>-6 -5 -4 -3 -2 -1</u>							0+1+2+3+4+5+6						
-6	6	4	12	7	11	8	9	10	9	9	11	10	8	
— 5	4	7	8	3	8	8	4	8	5	9	9	3	6	
-4	1	9	8	11	10	7	9	8	13	5	7	6	9	
— 3	2	8	10	6	9	2	6	2	8	13	6	13	6	
-2	5	6	9	11	10	10	8	8	6	10	7	6	10	
1	9	11	13	6	6	15	5	6	4	6	8	10	8	
0	6	12	8	8	8	7	11	8	6	8	8	11	5	
+1	10	11	10	13	11	5	6	7	7	6	5	10	4	
+2	в	8	9	5	14	9	9	6	9	9	5	4	5	
+3	12	14	8	8	7	5	10	11	10	7	6	9	10	
+4	18	9	8	10	8	8	4	14	4	3	4	4	5	
+5	14	10	9	7	8	4	3	7	10	9	4	7	3	
+6	11	6	5	8	9	9	11	4	9	5	2	1	2	

r		(r)
,	obs.	theor.
0	0	0.1
1	2	0.6
2	5	2.3
3	5	5.6
4	13	11.1
5	14	17.2
6	22	22.0
7	13	24.1
8	27	23.7
9	24	20.0
10	18	15.7
11	12	10.8
12	3	7.1
13	5	4.2
14	4	2.3
15	1	1.1
≥ 16	1	1.0

No. 31. $a=4^{\rm h}0^{\rm m!};~B=-21^{\rm o}.~N=2331~;~w_1=10^{30}~;~w_2=10^{11}.$ $s_1=21~;~\delta_1=4.6~;~s_2=31~;~\delta_2=21.7$

-	<u>-6 -</u>	-5 -	-4	<u>3</u>	-2	-1	0 -	+1	+2	+3	+4	+5	+6	ا ما	$oldsymbol{r}$		n(r)
6	12 1	14	15	15	12	14	12	12	10	11	14	7	7	$+\alpha$		obs.	1
5	8 1	18	12	21	2 0	24	19	23	20	15	13		6			$0+4 \\ 4+0$	
4	11 1	16	16	15	20	25	19	21	13	15	25	16	15				0.1 + 0.7
— 3	21 1	18	19	22	20	21	16	14	13	11	14	16	11			•	1.6+3.4
2	23 %	21	20	26	19	10	9	14	8	16	11	15	9			•	5.6+8.5 $11.7+14.7$
1	30 2	27	2 2	16	16	9	13	10	9	19	7	18	22		12-13	7+20	17.1 + 18.6
0	19 1	18	26	18	18	11	11	9	8	13	13	19	16			• 1	17.7 + 16.5 $14.3 + 11.6$
+1	22 1	18	19	14	10	16	13	14	9	14	17	17	10				8.8 + 6.4
+2	13 %	22	13	10	16	13	5	13	15	18	9	6	5			• 1	4.4 + 2.9
+3	16 2	25	16	13	8	13	14	9	13	6	2	9	1		1		1.8 + 1.0 0.6 + 0.4
+4	15 1	14	13	21	17	10	14	15	13	9	1	1	2		26 - 27		0.2 + 0.1
+5	10 1	1	18	17	20	24	18	13	10	4	8	2	1		\geqslant 28	1	0.1
-+6	6	9	10	12	13	13	13	4	8	8	2	5	4				
 	δ																

No. 32. $a=4^{\rm h}8^{\rm m};~B=-20^{\circ}.~N=877;~w_1=400~000;~w_2=3000.$ $s_1=25;~\delta_1=1.4;~s_2=7;~\delta_2=11.9$

 $+\alpha$

-	-6	<u>5</u>	4	3	-2	-1	0	+1	+2	+ 3	+4	+5	6
6	5	3	1	6	7	5	4	7	7	4	9	11	6
5	9	6	10	10	4	9	1	9	5	4	4	19	2
4	4	11	8	6	7	3	6	9	17	6	6	4	7
3	7	4	5	7	8	9	7	5	9	6	3	4	2
2	8	5	9	6	2	4	3	5	5	7	10	8	9
-—1	7	15	4	7	4	7	3	4	4	6	6	5	3
0	7	8	11	7	2	3	7	4	6	10	4	5	4
-+1	4	11	7	7	7	5	1	5	3	8	4	9	7
+2	2	5	8	12	4	1	6	2	9	6	6	5	2
-+3	6	1	3	ā	6	4	4	2	2	4	6	6	1
-· 4	0	3	3	5	2	3	1	0	3	4	3	6	3
+5	0	3	0	1	4	12	6	3	1	2	4	0	5
-+6	3	2	2	1	1	5	7	4	1	2	3	1	1
	δ												

r	n	(r)
	obs.	theor.
0	5	1.0
1	14	5.0
2	14	12.5
3	19	22.0
4	27	28.4
5	18	29.9
6	21	25.8
7	20	19.4
8	7	12.5
9	11	7.1
10	4	3.7
11	4	1.7
12	2	0.8
≥ 13	3	0.8

 $a = 4^{\rm h}16^{\rm m} \, ; \ B = -18^{\rm o}. \quad N = 1378 \, ; \ w_1 = 10^{17} \, ; \ w_2 = 10^{11}.$ № 33. $s_1 = 40$; $\delta_1 = 3.0$; $s_2 = 24$; $\delta_2 = 16.0$

						_	,	. Т	- •	·, ·	Z	,	., 2				
-	<u>-6 -</u>	<u>-5</u> -	-4 -	-3 -	_2 -	-1	0	⊦1 -	+2-	+ 3 -	+4	- 5 -	+ 6	$+\alpha$	r		(r)
 6	13	8	13	17	15	13	10	8	6	4	7	4	5			obs.	
— 5	14	5	11	9	15	8	11	19	8	10	4	7	6		0	$egin{array}{c c} 4 & 6 \end{array}$	$\begin{array}{c} 0.1 \\ 0.4 \end{array}$
4	7	12	10	9	15	8	11	9	19	7	9	12	13		2 3	9 5	1.8 4.5
— 3	3	7	9	8	11	16	2	9	7	16	16	8	15		4 5	15	9.3
-2	9	13	14	11	5	5	7	9	12	9	20	9	8		6	11 10	$\begin{array}{c c} 15.1 \\ 20.3 \end{array}$
-1	9	8	14	7	7	17		7	10	13	21	19	14		7 8	20 18	23.3 23.9
0	12	8	9	9	10	17	5	8	13		14	9	14		9	18	21.2
+1	11	7	9	7	9	5	6	5	8	16	13	4	0		10 11	8 9	17.4 12.7
+2	5	4	4	6	6	8	9		7	7	2	2	3		12 13	5 8	8.6 5 .4
								10		-					14	6	3.1
- 3	4	2	3	6	6	11	9	7	12	8	8	2	2		$\begin{array}{c} 15 \\ 16 \end{array}$	4 4	$\begin{array}{c} 1.7 \\ 0.8 \end{array}$
+1	8	4	4	7	10	6	6	7	2	0	1	8	4		17	3 6	0.4
+5	1	7	1	8	10	7	6	1	0	5	7	5	4		≥18	0	0.4
- + 6	2	1	4	4	3	0	1	3	11	4	5	4	2				
.	á																

 N_2 34. $a = 4^{h}24^{m}$; $B = -17^{0}$. N = 274; $w_1 = 10$; $w_2 = 18$. $s_1 = 26$; $\delta_1 = 0.31$; $s_2 = -$; $\delta_2 = -$

_	-6 -	-5-	-4 -	<u>-3</u> -	<u>-2 -</u>	-1	0 -	+1 -	+2 -	+3 -	+4 -	+ 5 -	+ 6	$+\alpha$	r		(r)
6	5	2	1	0	1	0	1	4	0	3	1	0	1	Τ α		obs.	theor.
			_												0	40	32.5
-5	1	2	4	3	1	3	1	0	1	1	1	2	2		1	50	53.8
-4	4	3	4	4	3	2	4	3	5	4	2	3	2		2	38	44.0
-3	3	3	1	1	3	5	1	1	2	2	3	2	2		3	22	24.3
_2	1	3	2	3	1	1	2	1	2	3	1	2	3		4	13	9.9
- —1	3	4	2	1	5	1	0	1	0	0	0	2	0		$\geqslant 5$	6	4.5
• 0	2	1	4	2	3	2	0	0	0	0	2	3	1				
+1	0	1	2	2	0	1	0	1	0	0	o	1	2				
+2	2	1	1	2	1	0	1	2	0	0	2	2	2				
+3	0	0	1	0	0	0	0	0	0	1	3	2	1				
+4	0	0	3	0	1	2	4	0	1	5	0	1	2				
+ 5	2	1	1	2	1	2	5	4	1	2	4	1	3				
-+6	1	0	0	3	2	1	4	1	1	1	1	0	0				
+	δ																

-	-6 -	-5 -	-4 -	-3 -	<u>-2</u> -	-1	0 -	+1	+2-	+3	+4	+5	+6
6	3	2	1	2	3	0	2	7	.11	6	4	8	5
— 5	2	4	7	2	. 3	3	4	6	5	8	6	4	11
-4	6	3	2	7	2	7	2	2	7	7	<i>13</i>	1.2	6
-3	4	5	2	4	2	4	3	2	5	7	7	4	6
-2	3	6	1	8	7	3	3	5	2	6	9	7	6
-1	5	2	1	1	2	1	4	2	5	6	8	3	3
0	2	2	4	0	2	0	7	4	3	2	O	4	6
+1	4	3	8	6	3	0	7	3	0	2	2	3	3
+2	4	6	2	2	7	4	5	2	2	3	1	2	2
+3	5	3	5	2	2	2	3	3	4	2	0	2	3
-+4	4	7	8	4	5	3	1	4	2	1	1	2	1
+5	1	3	3	3	1	4	1	2	1	1	0	0	0
+6	1	1	0	4	0	1	2	2	2	0	0	0	0
+	δ												

r	obs.	(r) theor.
0	16	5.0
1	18	17.5
2	39	30.5
3	26	36.4
4	21	32.3
5	11	22.8
6	13	13.4
7	14	6.7
8	6	2.9
9	1	1.2
≥1 0	4	1.0

No. 36. $a = 4^{h}40^{m}$; $B = -14^{0}$. N = 1458; $w_{1} = 10^{120}$; $w_{2} = 10^{54}$. $s_{1} = 61$; $\delta_{1} = 2.0$; $s_{2} = 35$; $\delta_{2} = 17.5$

-	-6-	<u>-5</u>	<u>-4</u>	<u>-3</u>	- 2	-1	0 -	+1	+2	+3	+ 4	+ 5	+6
— 6	12	2 0	2 2	25	6	17	12	10	22	16	12	12	7
5	13	24	20	14	19	7	7	9	8	7	15	16	9
-4	18	10	11	14	15	12	16	<i>15</i>	9	14	9	20	15
-3	8	11	14	13	17	6	16	20	10	9	10	17	1 8
— 2	6	11	11	12	18	11	14	10	16	7	10	12	9
-1	4	3	7	8	7	8	9	13	1 8	18	18	18	1 4
0	8	9	5	10	16	10	15	12	13	16	14	14	13
+1	2	8	10	10	5	11	8	16	12	16	21	4	6
+2	2	3	6	11	6	8	2	2	3	5	4	4	12
+3	2	3	4	7	3	1	4	0	3	3	4	2	7
+4	1	5	1	2	1	3	1	3	1	2	6	2	4
+5	0	3	2	2	1	3	0	1	1	2	1	0	4
+6	0	0	0	2	2	1	0	2	1	1	1	1	0

r	obs.	$n(r) \ \ theor.$
0-1	9+15	0.04+0.3
2—3	15+11	1.1+3.2
4 —5	9+4	6.9+11.7
67	7+ 9	17.0+21.4
8—9	8+8	22.9 + 22.4
10—11	10+ 7	19.2+15.2
12—13	10+ 5	11.1+7.3
14—15	8+ 5	4.6+2.7
16—17	9+3	1.5+0.7
18—19	7+ 1	0.3 + 0.1
≥20	9	0.1

+8

No. 37. $a = 4^{h}48^{m}$; $B = -12^{0}$. N = 738; $w_{1} = 90\ 000$; $w_{2} = 200\ 000$. $s_{1} = 14$; $\delta_{1} = 0.57$; $s_{2} = 7$; $\delta_{2} = 10.1$

-	-6	— 5	-4	-3	_2	-1	0 -	+1-	+ 2 ·	+3	+ 4·	+ 5 ·	+6	$+\alpha$	r		n(r)
-6	2	2	2	10	2	10	14	11	10	12	7	9	11	ι α		obs.	
-5	5	6	4	1	6	9	13	10	9	11	12	10	15				0.1 + 0.4 $1.3 + 3.5$
4	9	5	5	8	8	14	7	10	9	14	15	14	15		i e		7.4+12.7
-3	5	3	8	10	15	9	10	14	20	2 8	21	13	12				17.9 + 22.0
2	0	6	7	9	7	9	13	14	21	36	40	20	8			,	$\begin{vmatrix} 23.2 + 22.2 \\ 18.8 + 14.5 \end{vmatrix}$
-1	8	5	11	11	8	4	7	15	15	18	19	11	13		12—13	8+4	10.4 + 6.7
0	10	7	12	12	5	7	9	5	15	8	12	6	10				4.2 + 2.4 $1.3 + 0.6$
+1	12	6	5	6	6	11	3	5	9	9	7	10	7				0.3 + 0.2
+2	8	5	5	6	6	6	8	2	10	6	5	8	3		20—21		
+3	9	12	8	11	6	10	5	7	14	8	7	4	8		22 - 27 $28 - 29$		$\downarrow_{0.1}$
+4	6	0	8	4	4	5	4	5	3	5	7	3	4		30—35	0	
+5		10	3	3	8	5	7	4	5	7	4	3	6		≥36	2	J
+6	ĺ			6	5	3	6	0	2	0	1	3	4				
+	<u></u>																Tile - 1244.

No. 39. $a = 5^{h}4^{m}$; $B = -9^{0}$. N = 1244; $w_{1} = 1300$; $w_{2} = 900$. $s_{1} = 8$; $\delta_{1} = 2.8$; $s_{2} = 16$; $\delta_{2} = 12.6$

-	<u>6</u>	<u>—5</u>	<u>-4</u>	3	<u>-2</u>	-1	0	+1	+2	+3	+4	+5	+6	
6	4	8	13	5	10	6	5	4	11	6	9	10	4	
-5	9	16	13	9	1 5	5	9	12	11	10	11	13	10	
4	10	11	14	7	3	6	6	9	11	5	11	8	6	
-3	15	10	5	7	10	7	12	11	7	8	5	7	4	
-2	22	9	11	5	3	9	9	6	6	8	7	4	8	
-1	9	13	10	4	5	8	5	5	6	8	6	2	5	
0	6	8	4	2	8	3	15	7	10	3	5	6	10	
+1	8	5	6	7	12	6	6	7	13	8	4	6	8	
+2	12	2	10	5	7	8	3	8	4	5	8	2	4	
+3	4	12	8	3	4	8	3	8	5	3	5	12	5	
+4	7	4	9	9	5	6	4	11	10	9	8	5	5	
+5	3	4	6	1	11	10	6	12	9	10	10	7	4	
+6	3	1	2	4	6	6	5	3	9	7	6	7	3	
+	δ													

r		(r) theor.
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ \geqslant 17 \\ \end{array}$	0 2 5 12 17 22 21 14 19 14 15 10 7 5 1 3	0.1 0.8 3.0 7.3 13.5 19.7 23.8 25.0 23.0 18.5 13.5 8.9 6.5 3.1 1.7 0.7 0.3 0.2

No. 40. $a = 5^{\rm h}12^{\rm m}; \ B = -8^{\rm o}. \ N = 2696; \ w_1 = 10^{14}; \ w_2 = 10^{18}.$ $s_1 = 24; \ \delta_1 = 7.6; \ s_2 = 23; \ \delta_2 = 25.3$

-	-6-	— 5	—4	-3	2	-1	0	+1	+2	+ 3	+4	+5	+6	$_{ullet}+lpha$
-6	19	17	19	31	22	13	25	31	16	28	11	7	7	, a
— 5	18	19	20	19	19	15	16	19	18	14	28	13	12	
-4	18	16	16	11	11	8	11	15	15	26	20	14	8	
—3	20	14	6	17	14	10	12	16	22	14	15	21	18	
-2	15	16	13	8	12	8	10	14	17	11	20	24	19	
-1	14	14	14	16	6	8	8	5	7	10	18	31	14	İ
0	15	25	15	12	8	9	6	8	12	14	25	18	20	ĺ
+1	16	16	16	10	11	7	10	10	12	9.	12	24	14	i
+2	15	2 4	15	19	22	14	10	12	25	12	21	13	11	
+3	14	19	29	20	28	25	15	14	21	16	15	13	8	
+4	22	<i>32</i>	26	28	15	2 2	<i>23</i>	22	14	15	13	1 2	6	
+5	16	16	25	16	<i>30</i>	16	18	20	16	16	2	8	6	
					26								11	

r	obs.	$n(r) \ theor.$
18-19 $20-21$ $22-23$	16+14 17+3 7+9 7+3 10+2 4+6	0.4 + 1.1 $2.1 + 3.6$ $5.7 + 8.4$ $11.2 + 14.0$ $16.2 + 17.2$ $17.0 + 15.7$ $13.9 + 11.7$ $9.4 + 7.1$ $5.4 + 3.6$ $2.4 + 1.5$ $0.9 + 0.5$

№ 41. $a = 5^{h}20^{m}$; $B = -6^{0}$. N = 586; $w_{1} = 5$; $w_{2} = 6$. $s_{1} = -$; $s_{1} = -$; $s_{2} = -$; $s_{2} = -$

r		(r) [theor.
0	7	5.4
1	22	18.4
2	30	31.8
3	29	36.8
4	37	32.0
5	21	22.1
6	9	12.6
7	6	6.3
8	5	2.7
9	2	1.1
≥ 10	1	0.9
<u> </u>		

№ 42. $a = 5^{h}28^{m}$; $B = -5^{0}$. N = 2852; $w_{1} = 10^{19}$; $w_{2} = 10^{25}$. $s_{1} = 29$; $\delta_{1} = 7.7$; $s_{2} = 17$; $\delta_{2} = 30.1$

	6	-5	-4	-3	<u>-2</u>	-1	0	+1	+2	+3	+4	+ 5	+6	$+\alpha$
6	11	9	19	28	38	27	24	18	18	20	16	12	18	"
— 5	11	16	22	26	29	18	39	29	22	21	22	14	11	
-4	6	17	24	29	21	<i>37</i>	27	31	21	20	19	19	18	
— 3	7	10	21	20	22	16	11	25	<i>30</i>	22	19	19	14	
-2	5	18	19	17	21	14	14	12	17	22	13	12	12	
-1	10	11	19	29	14	8	12	17	18	22	27	19	21	
0	5	16	11	11	23	12	12	16	19	22	10	14	17	
+1	8	2	17	16	16	17	25	15	15	21	19	29	25	
+2	6	6	12	16	16	11	10	15	18	<i>31</i>	20	14	3 6	Ī
+3	5	10	9	18	18	10	13	12	21	16	26	20	22	
+4	4	6	8	13	11	14	8	21	23	22	21	10	19	
+5	4	7	9	15	11	5	13	28	13	13	14	12	12	
+6	6	8	15	10	12	16	11	21	21	15	21	23	21	
		_												

r	obs.	$n(r) \ theor.$				
$ \begin{array}{c} 12 - 13 \\ 14 - 15 \\ 16 - 17 \\ 18 - 19 \\ 20 - 21 \\ 22 - 23 \\ 24 - 25 \end{array} $	8+11 12+6 9+6 11+7 10+11 5+13 10+3 2+3 2+4 2+5 1+2 0	1.3 + 2.5 $4.0 + 6.8$ $8.8 + 11.5$ $13.8 + 15.5$ $16.3 + 16.4$				

No. 43. $a = 5^{\text{h}}36^{\text{m}}$; $B = -3^{\text{o}}$. N = 2466; $w_1 = 130$; $w_2 = 10^{\text{s}}$. $s_1 = 16$; $\delta_1 = 8.4$; $s_2 = 24$; $\delta_2 = 23.4$

-	-6-	-5	-4	-3	2	-1	0	+1	+2	+3	+4	+5	+6
-6	14	21	15	10	12	13	12	15	9	16	17	9	9
5	9	10	12	10	14	9	11	10	18	17	12	9	13
-4	16	14	12	15	13	14	11	14	10	15	18	16	14
— 3	10	14	11	8	10	17	7	10	12	16	11	19	7
— 2	9	13	13	19	6	8	9	11	12	21	18	<i>30</i>	15
-1	14	15	6	4	10	9	11	9	16	12	2.1	26	21
0	10	10	10	14	9	11	в	11	14	24	15	2 2	20
+1	13	16	8	20	9	8	15	11	11	17	21	26	15
+2	15	22	19	9	16	16	21	8	16	20	2 2	24	22
+3	11	23	26	24	14	23	12	14	8	18	17	22	25
+4	17	21	21	18	14	8	14	13	13	24	<i>30</i>	25	16
+5	8	17	12	16	13	15	16	10	14	17	2 3	19	14
+6	17	12	20	16	11	11	12	11	16	10	20	17	14
+	$-\delta$				يحك بسيد								

r	$n(r) \ obs. \mid theor.$							
0- 3	_	0.1						
4 — 5	1 + 0	0.3 + 0.6						
6 7	3 + 2	1.3 + 2.7						
8-9	8+13	3.7+7.4						
10 - 11	14 + 14	10.5 + 13.6						
12—13	12+ 9	16.2 + 18.1						
14—15	17+11	18.0 + 17.2						
16—17	14+10	15.3 + 12.8						
		10.0 + 7.6						
	•	5.4 + 3.6						
	• •	2.4 + 1.5						
	• 1	0.9 + 0.5						
26 - 27	• 1	0.2 + 0.1						
28 - 29	0	`						
30	$\frac{\circ}{2}$	$\{0.1$						
	-	_						

No. 44. $a = 5^{h}44^{m}$; $B = -2^{0}$. N = 2436; $w_{1} = 6.10^{8}$; $w_{2} = 10^{8}$. $s_{1} = 23$; $\delta_{2} = 6.9$; $s_{2} = 19$; $\delta_{2} = 24.4$

_	-6-	— 5	-4	-3	-2	-1	0	+1	+2	+3	+4	+ 5	+6
- 6	8	12	7	9	8	8	13	4	8	9	10	6	11
-5	8	10	19	14	13	6	12	7	10	5	15	12	8
-4	10	11	14	12	4	7	11	16	16	12	9	10	2
-3	16	9	13	16	8	15	18	17	14	18	16	9	10
-2	26	13	11	13	19	25	28	16	24	23	22	15	10
-1	19	21	14	20	19	15	18	17	13	23	11	23	16
0	20	16	22	17	15	15	18	11	19	13	19	14	15
+1	17	21	19	16	8	14	9	16	6	13	9	18	15
+2	17	25	16	12	21	29	18	15	17	2 0	29	18	9
+3	12	23	17	11	17	16	13	14	15	17	25	14	10
+4	14	20	12	12	11	6	19	17	16	9	12	13	10
+5	20	14	8	15	14	22	22	14	18	16	8	8	6
+6	12	15	16	22	26	24	20	25	8	4	9	9	6

r		n(r)
	obs.	theor.
0- 1	0	
2— 3	1+0	0.01 + 0.05
4- 5	3+1	0.2 + 0.5
6 - 7	6 + 3	1.2 + 2.4
8 9	12+11	4.3 - 6.9
10-11	9+8	9.8 + 13.0
12 - 13	11+10	15.7 + 17.8
14 - 15	12+12	18.1 + 17.3
16—17	15+10	15.6 + 13.1
18—19	8+8	10.5 + 7.9
		5.7+3.9
22 - 23	5+4	2.6 + 1.7
2425	2+4	1.0 + 0.6
26 - 27	2 + 0	0.3 + 0.1
≥28	3	0.1
1		

No. 45.
$$a = 5^{h}52^{m}$$
; $B = 0^{o}$. $N = 1680$; $w_{1} = 350$; $w_{2} = 10^{12}$. $s_{1} = 50$; $\delta_{1} = 6.2$; $s_{2} = 6$; $\delta_{2} = 24.8$

<u>-</u>	<u>-6</u>	— 5	-4	—3	_2	1	0 -	+1	+2	+3	+4 -	 -5 -	+6	$+\alpha$	r	obs.	n(r) theor.
6	5	11	3	11	4.	10	8	10	11	6	7	8	10	1 %	0— 1		0.1
— 5	11	8	7	15	9	7	8	16	15	10	11	14	11			-	0.5+ 1.7
-4	8	2	7	6	6	7	3	8	12	15	<i>33</i>	11	9				3.4 + 6.8
- 3	4	6	5	4	8	6	9	11	7	11	19	11	7				11.1 + 15.7 $19.6 + 21.3$
-2	8	5	3	6	7	7	8	7	11	10	7	10	9		10—11	20+18	20.3+19.1
1	13	13	11	7	8	9	10	12	10	8	7	7	9			, .	$\begin{vmatrix} 15.9 + 12.1 \\ 8.6 + 5.7 \end{vmatrix}$
0	12	15	8	12	9	11	20	10	5	3	8	3	6		2	1 -	3.5 + 2.1
+1	12	11	10	15	6	11	7:	8	8	5	12	8	5			_	1.1+ 0.6
+2	12	10	8	12	8	10	6	3	7	12	17	9	5		2021 2223	$\begin{vmatrix} 1+1\\ 2+1 \end{vmatrix}$	1 8
+3	13	9	7	9	7	10.	10	12	9	11	13	8	4		2 4—2 5	1+0	$\left \right _{0.6}$
+4	11	12	8	16	22	12	13	17	16	10	10	10	15		26-27 $28-31$	$\begin{vmatrix} 1+ & 0 \\ 0 & \end{vmatrix}$	
+5	6	8	13	21	8	12	10	12	6	9	10	22	12			0+1	
+6	9	9	8	13	23	26	24	11	13	18	5	10	9				
4	-δ						·							J			

№ 46. $a = 6^{h}0^{m}$; $B = +1^{o}$. $s_1 = 13.8$; $\delta_1 = 15.4$;

I.
$$[N=1112\,;\;w_1=1700\,;\;w_2=150.$$
 $s_1=2.0\,;\;\delta_1=9.0\,;\;s_2=2.8\,;\;\delta_2=53.9]$

		-6	_	5	_	-4		-3		-2		-1	
0	1	4	8	4	5	6	7	9	2	6	8	15	4
-6	6	4	3	7	9	6	5	7	10	4	1	10	11
-	8	7	7	4	11	9	4	4	6	11	4	10	10
5	3	1	2	8	4	8	5	8	11	4	8	6	12
	2	3	3	4	4	11	6	14	9	9	6	9	9
+	2	9	9	7	2	6	8	11	5	12	13	4	8
	2	5	3	4	8	4	6	11	7	12	8	8	7
— 3	8	6	8	3	7	10	3	10	6	11	18	14	15
9	2	8	5	4	2	7	2	10	9	9	8	12	5
-2	9	5	7	4	4	7	6	4	9	7	6	4	7
,	8.	5	3	7	8	6	4	4	6	8	5	5	7
1	3	12	3	3	4	5	7	7	2	5	6	8	5
0	7	9	4	3	5	1	11	7	8	5	5	9	4

r		(r) theor.
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \geqslant 16 \end{array} $	0 4 10 12 26 17 17 20 21 15 7 9 5 1 2 2	0.3 1.6 5.0 11.3 19.3 24.1 26.5 24.9 20.5 15.1 9.9 5.9 3.3 1.6 0.8 0.4 0.4

III. [N=1473;
$$w_1 = 130\ 000$$
; $w_2 = 10^6$. $s_1 = 2.8$; $\delta_1 = 13.8$; $s_2 = 4.2$; $\delta_2 = 63.0$]

0.		6	_	-5	_	-4		-3		$\cdot 2$	_	-1		0
	4	10	6	2	5	7	5	8	11	18	11	6	5	ı
	3	4	6	4	3	4	3	8	8	20	6	9	5	ı
+1	7	4	7	4	4	15	2	7	8	14	12	5	6	ı
	7	12	7	2	13	8	7	10	13	6	17	9	4	l
+2	9	4	5	8	10	10	3	<i>15</i>	6	6	10	7	7	
1.9	6	2	7	7	12	10	10	17	12	6	5	13	5	İ
+3	3	7	6	4	7	11	11	12	13	9	5	4	6	
	9	4	5	9	8	10	9	14	7	9	6	12	1	
+4	5	5	7	12	8	16	5	13	7	<i>15</i>	17	9	11	l
1.5	3	6	9	13	16	16	7	15	9	10	11	12	11	İ
7-0	6	13	10	11	18	18	13	7	9	13	15	13	8	l
1 8	5	5	8	15	12	15	8	17	8	13	14	11	10	
70	3	5	4	8	10	11	8	6	9	9	9	13	11	l
-	$+\delta$													

r		(r) theor.
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ \geqslant 20 \\ $	0 1 4 7 13 16 16 18 14 15 12 11 9 12 3 7 3 4 3 0 1	0.04 0.3 1.1 3.1 6.8 11.6 16.9 21.3 22.8 22.5 19.3 15.3 11.2 7.4 4.7 2.7 1.5 0.7 0.3 0.1 0.04

N = 6491; $w_1 = 10^{49}$; $w_2 = 10^{59}$. $s_2 = 14.0$; $\delta_2 = 80.0$

II.
$$[N=1878\,;\;w_1=10^{13}\,;\;w_2=10^{10}.$$
 $s_1=7.0\,;\;\delta_1=18.6\,;\;s_2=2.5\,;\;\delta_2=83.6]$

-	0	_+	1	+	2	_+	-3	+	4	+	-5	+	6	مم ا	$oldsymbol{r}$		n(r)
	6	5	5	4	4	6	5	4	12	8		5	2	$+\alpha$		obs.	theor.
6	9	9	6	6	6	5	2	8	6	10	15	5	5		0— 1		0.02
	9		13	9	3		10		12			_	_		2— 3		0.1+0.5
— 5	ľ			9	ð						15	8	6		4— 5	5+16	1.7+3.6
,	10	10	10	10	9	7	9	13	7	12	10	5	13		6- 7	8+11	6.4 + 10.4
	14	13	13	8	10	11	11	13	25	7	15	11	10		8 9	8+10	14.3 + 17.9
-4	8	16	13	5	18	12	16	13	13	15	18	12	11		10—11	15+11	19.9+20.3
	5	7	14	10	13	14	13	17	12	11	13	12	13		12—13	16+16	18.8+16.2
-3															14—15	10+ 9	12.7 + 9.7
	7	7	9	9	10	12	10	19	14	19	23	20	14		16—17	10+ 2	6.7 + 4.4
າ	12	11	7	14	10	16	11	11	15	20	13	14	12		1819	4+ 2	2.7+1.5
2	5	13	9	7	12	8	12	16	24	22	16	16	15		2021	5+ 1	0.9+0.5
	6	18	11	7	12	15	17	13	12	18	20	21	7		≥22	5	0.2
-1	5	2	11	15	12	16	8	20	14	22	14	12	7				
	5	4	3	10	11	15	9	20	16	16	16	10	14				
0															J		

IV.
$$[N = 2028; w_1 = 10^{28}; w_2 = 10^{40}.$$

 $s_1 = 2.0; \delta_1 = 13.0; s_2 = 4.5; \delta_2 = 110.0]$

	0	+	·1	+	2	+	-3	+	4	+	.5	+	6
0	8	7	7	13	13	12	14	18	8	16	11	15	6
	2	8	6	27	16	7	19	15	16	21	11	14	12
+1	7	6	11	8	19	12	14	2 2	24	25	8	19	16
1.0	2	9	6	10	16	10	23	<i>37</i>	<i>33</i>	22	19	11	7
+2	6	11	7	14	17	14	<i>30</i>	3 5	<i>37</i>	<i>32</i>	14	25	14
1.0	5	8	4	14	9	25	29	23	32	21	15	14	8
+3	6	8	12	11	9	16	12	15	2 3	20	12	16	7
, ,	6	10	4	11	13	10	9	18	15	9	16	7	5
+4	8	5	9	14	11	6	9	12	24	11	11	4	2
	11	12	10	17	16	11	13	12	6	12	8	3	4
+ 9	10	9	17	7	13	10	7	13	8	6	7	8	4
	6	11	15	9	7	8	2	7	8	5	6	6	2
+6	9	3	7	8	7	7	6	9	5	2	5	3	4

r		$n(r) \ \ theor.$					
14 - 15 $16 - 17$ $18 - 19$ $20 - 21$	6+3 6+6 14+16 15+11 7+13 10+6 10+6 9+3 2+4 1+2 2+3 2+3 0+1	0.1 + 0.4 $0.9 + 2.1$ $4.2 + 7.4$ $11.1 + 14.7$ $17.8 + 19.2$ $19.4 + 17.9$ $15.2 + 12.2$ $9.2 + 6.5$ $4.3 + 2.8$ $1.7 + 0.9$					

No 47. $a = 6^{h}8^{m}$; $B = +3^{o}$. $s_1 = 21.8$; $\delta_1 = 13.0$;

$$\begin{array}{ll} \mathbf{L} & [N\!=\!1711\,;\;w_1\!=\!3.10^8\,;\;w_2\!=\!2000.\\ & s_1\!=\!4.0\,;\;\delta_1\!=\!12.2\,;\;s_2\!=\!3.5\,;\;\delta_2\!=\!67.4] \end{array}$$

	(3		5		4		3		2		1		0
e	6	8	6	4	8	9	9	11	7	7	7	10	7	ı
-0	11	14	8	9	11	13	13	13	16	12	17	7	7	l
5	6	12	11	8	13	17	12	10	12	9	9	18	6	l
5	13	12	10	15	15	12	11	15	17	17	11	10	8	İ
	9	13	9	14	7	11	9	12	9	10	8	5	10	İ
-+	16	11	12	13	9	12	15	12	12	10	5	4	1	Ì
	6	11	10	11	9	18	14	9	8	3	7	6	7	l
-3	14	13	16	14	12	14	10	10	13	8	7	9	6	İ
	15	12	16	13	12	8	10	13	10	10	2	3	4	l
- 2	17	14	17	12	9	12	11	11	9	2	6	2	2	
	15	20	13	8	8	9	12	7	6	10	6	7	1	
-1	17	9	13	9	14	12	18	7	5	6	9	2	6	
	14	16	15	12	16	17	12	10	6	2	1	. 6	4	
ol														ı

r .		(r) theor.
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ \geqslant 20 \\ \end{array}$	0 3 6 2 4 3 14 13 11 19 15 12 20 13 9 7 6 8 3 0	0.05 0.1 0.3 1.2 3.0 6.0 10.1 14.5 18.7 20.8 21.4 19.5 16.6 13.0 9.4 6.3 3.9 2.4 1.3 0.8 0.7

III. $[N=1847 ; w_1=6.10^8; w_2=7.10^9.$

$$s_1 = 4.5$$
; $\delta_1 = 18.4$; $s_2 = 4.5$; $\delta_2 = 80.0$]

								-		-	-		,
Δ.		6		5		-4	_	.3	_	-2		-1	
+1 +2 +3 +4 +5 +6	14	12	19	7	15	9	10	9	6	5	3	2	2
1 1	15	7	20	20	14	15	12	8	11	12	5	8	3
+1	22	15	18	16	14	9	12	10	4	7	6	11	3
´1 9	20	15	20	12	13	9	10	7	5	7	10	12	10
+4	30	18	24	20	15	15	15	12	9	3	8	3	12
ı a	22	17	20	16	10	15	10	16	10	7	5	4	9
+9	18	13	19	8	8	10	10	20	11	8	11	8	8
1.4	11	20	10	8	13	9	10	12	1 0	11	10	12	8
+4	14	11	5	7	7	9	12	11	9	10	18	16	9
1.5	10	11	4	10	11	14	15	7	12	15	11	11	4
40	3	7	13	7	17	11	9	13	8	13	11	11	5
1.0	6	8	9	9	12	6	10	19	12	11	10	5	8
+0	7	6	8	7	8	14	16	14	6	12	7	8	7
+	δ												

, - 2		,
r	obs.	n(r) theor.
0-1	0	
2-3	2 + 6	0.2 + 0.6
45	4+7	1.9+ 4.0
6 - 7	6+15	7.1+11.3
8—9	16+13	15.4 + 18.7
10—11	19+16	20.4+20.3
12—13	15+ 6	18.5 + 15.6
14 - 15	7+11	12.0 + 9.0
16—17	5+2	6.0 + 3.9
18—19	4+3	2.4+1.3
20—21	8+0	0.5 + 0.2
\geqslant 22	4	0.2

N = 5539; $w_1 = 10^{21}$; $w_2 = 10^{17}$. $s_2 = 9.2$; $\delta_2 = 70.9$

II. [N=968;
$$w_1 = 1000$$
; $w_2 = 700$. $s_1 = 6.8$; $\delta_1 = 9.8$; $s_2 = -$; $\delta_2 = -$]

()	+	-1	+	2	+	-3	+	-4	+	-5	+	-6	$+\alpha$	r		(r)
	6	6	9	4	5	4	9	10	4	3	11	10	9	T a		obs.	theor.
-6															0	0	0.5
	9	3	6	3	3	1	2	6	7	7	7	3	14		1	5	3.1
	6	7	2	3	1	3	2	3	8	6	5	6	7		2	10	8.8
-5	10	10	6	6	5	6	5	7	3	4	2	6	6		3	29	17.1
															4	16	2 4 .7
	5	3	. 3	9	2	12	6	5	7	4	9	6	6		5	23	28.3
+	2	6	10	4	4	2	6	2	3	3	5	4	5		6	30	27.0
	l														7	18	22.2
3	5	4	9	5	7	8	5	5	10	3	6	3	9		8	7	15.9
0	9	5	6	7	7	6	6	2	3	1	7	6	3		9	12	10.1
	3	7	10	7	6	4	9	6	8	5	5	11	8		10	9	5.8
-2				·							J		0		11	6	3. 0
	4	2	3	5	9	5	7	7	6	9	7	1	5		12	2	1.5
	5	3	3	3	5	11	6	11	10	7	3	6	3	_	13	1	0.6
1	٦	c		0	-					_					≥14	1	0.5
	7	6	1	6	5	8	10	3	3	5	3	8	13				
	4	5	3	11	3	6	8	11	4	4	4	4	12				
0	I																

IV. $[N=1013; w_1=12; w_2=8.$

$$s_1 = 6.5 \; ; \; \delta_1 = 13.1 \; ; \; s_2 = 1.25 \; ; \; \delta_2 = 48.0]$$

	0	+	1	1	2		3	_1.	4	+	5	+ (6	1	1 r	$\mid \mid n$	(r)
0	3	6	4	4	11	12	6	5	5	9	11	6	2	$+\alpha$		obs.	theor.
	3	4	4	0	10	3									0	0	0.5
+1	•		4	2	12	Э	9	5	5	6	4	7	7		1	1	2.5
1 ^	4	8	4	7	11	14	6	7	4	9	6	6	4		2	10	7.5
	7	5	3	7	8	3	8	8	12	6	8	8	8		3	15	14.0
+2				-											4	30	22.4
· ·	7	7	9	6	2	7	11	5	8	10	11	9	4		5	25	27.1
	3	10	3	4	7	4	6	5	7	3	7	6	5		6	22	27.4
+3	_	e	5	4	c	0	E	E	4	E		10			7	23	23.6
	5	6	Э	4	6	8	5	5	4	5	11	10	4		8	15	17.7
	3	4	8	9	8	4	6	11	5	7	8	6	4		9	10	11.9
+4	4	4	4	3	5	3	4	6	10	9	5	2	5		10	6	7.2
															11	7	3.9
	2	5	4	2	5	10	6	3	6	4	4	3	5		12	4	2.0
+5	6	5	7	4	8	3	6	9	7	5	7	9	4		13	0	0.9
			0			10	7		e	10	7		0		\geqslant 14	1	0.7
+6	7	3	2	4	5	10	7	9	6	12	7	7	6				
イツ	2	2	1	7	7	2	4	8	7	5	8	4	5				
+	- δ													5	B		

No 48. $\alpha = 6^{h}16^{m}$; $B = +5^{o}$. $s_1 = 5.7$; $\delta_1 = 4.9$;

I.
$$[N = 924; w_1 = 6; w_2 = 120.$$

$$s_1 = -; \ \delta_1 = -; \ s_2 = -; \ \delta_2 = -]$$

_	(6	-	.5	_	4		3	_	-2	_	-1	
0	4	7	11	7	5	9	7	14	3	4	4	6	8
6	6	5	4	13	7	7	9	8	5	6	5	7	1
_	7	5	8	3	6	8	13	9	3	6	4	7	7
5	4	2	6	16	6	8	10	6	4	4	4	10	2
	3	7	4	3	6	11	8	10	5	10	7	4	4
-4	4	5	5	5	4	7	7	4	5	6	5	6	4
0	3	7	3	8	8	4	4	4	5	4	6	3	4
3	0	6	7	4	5	9	6	6	5	8	3	4	3
0	4	6	12	7	8	4	4	4	1	4	3	5	1
-2	8	6	2	4	5	2	8	8	7	3	5	1	4
	6	5	5	5	7	2	3	5	7	3	3	3	2
1	5	3	8	13	3	9	6	3	5	1	4	2	4
0	4	5	4	9	4	7	4	2	3	2	6	5	3

r		r) theor.			
0	1	0.7			
1	5	3.9			
2	9	10.6			
3	21	19.4			
4	36	26.5			
5	25	29.1			
6	20	26.5			
7	20	20.8			
8	14	14.2			
9	6	8.5			
10	4	4.7			
11	2	2.4			
12	1	1.1			
13	3	0.5			
≽14	2	0.2			
	'				

III. $[N=799; w_1=75; w_2=3.5.$

$$s_1 = 3.5 \; ; \; \delta_1 = 6.0 \; ; \; s_2 = - \; ; \; \delta_2 = -]$$

0	<u>6</u>		-6 -5 -4		4	<u> </u>			2 -		-1		0	
0	6	7	7	5	5	4	5	7	6	4	2	1	2	
	6	4	2	3	8	6	2	6	5	2	1	0	2	
+1	6	5	5	2	2	4	6	1	3	5	2	6	6	
	1	5	8	7	3	4	7	8	4	6	9	7	6	
+2	8	8	9	3	2	3	7	4	3	4	3	6	6	
	2	6	4	3	4	12	2	2	4	2	5	6	5	
+3	1	10	5	5	4	5	5	2	9	2	5	6	5	
	2	6	6	7	6	1	0	2	3	6	4	3	6	
+4	6	2	4	5	7	4	5	6	2	4	3	7	6	
ا ـ ا	2	4	3	4	3	4	1	5	3	5	4	6	3	
+5	3	5	12	6	5	3	4	5	7	11	4	7	11.	ĺ
	8	5	5	8	4	2	2	3	6	4	4	4	7	
+6	2	2	5	4	8	3	6	4	8	6	5	10	8	
+	8						*****							•

r		$(r) \mid theor. \mid$
0	2	1.5
1	7	7.0
2	25	16.6
3	19	26.2
4	28	31.1
. 5	27	29.5
6	29	23.3
7	13	15.8
8	10	9.3
9	3	4.9
10	2	2.3
11	2	1.0
≥ 12	2	0.5

N = 3392; $w_1 = 20000$; $w_2 = 10000$. $s_2 = 0.5$; $\delta_2 = 44.0$

II.
$$[N = 777; w_1 = 1500; w_2 = -. s_1 = 2.2; \delta_1 = 3.1; s_2 = -.; \delta_2 = -.]$$

()	_+	1	+	-2		3	+	-4	+	5	+	6	$+\alpha$
	7	5	8	6	7	5	3	0	2	6	2	1	0	
6	5	7	7	5	4	2	6	6	6	4	1	0	2	
_	8	6	5	5	5	2	7	7	11	3	4	0	1	
— 5	5	7	9	1	5	2	4	8	7	7	6	1	4	
	5	5	1	7	4	2	4	5	9	5	5	1	3	
+	7	4	4	7	5	1	4	0	6	7	6	3	4	
	5	8	0	4	5	3	4	2	7	3	5	5	4	
— 3	3	6	3	6	8	7	4	7	7	8	7	5	3	
0	6	0	5	4	3	5	3	0	10	5	9	5	3	
— 2	3	3	5	2	5	4	3	8	5	7	9	3	6	
,	3	2	6	4	5	7	3	8	5	3	5	5	2	
-1	4	4	4	6	4	2	3	3	9	5	6	3	6	
0	1	5	2	4	5	2	6	6	10	5	6	5	2	

r		(r) theor.
0	8	1.9
1	9	8.0
2	15	18.0
3	22	27.5
4	23	31.6
5	36	29.1
6	20	22.5
7	20	14.7
8	8	8.5
9	5	4.3
10	2	2.0
≥ 11	1	1.3

IV. $[N = 892; w_1 = 1.5; w_2 = 120.$

$$s_1 = -; \ \delta_1 = -; \ s_2 = 0.5; \ \delta_2 = 44.0]$$

(0	+	-1	+	-2	+	-3	4	-4	+	-5	+	-6
0	3	6	4	7	1	4	9	1	7	5	6	3	2
	3	7	9	6	4	5	9	8	9	5	4	4	7
+1	3	5	5	7	8	5	5	7	10	11	4	4	1
	11	9	7	6	5	5	10	9	4	4	5	2	4
+2 +3	6	6	6	6	5	6	5	4	5	3	1	3	5
	9	5	3	4	6	7	6	8	10	4	9	5	2
+3	5	6	11	6	9	2	3	6	3	5	7	7	5
	4	4	11	5	4	5	12	7	11	4	4	1	3
+4	4	2	6	4	7	9	5	3	6	5	5	5	2
	8	5	5	5	2	3	5	3	4	8	4	4	3
+5	4	5	7	5	3	4	7	2	8	5	3	4	7
+4 +5 +6	10	6	1	4	3	14	6	2	3	4	3	9	4
+6	4	4	7	5	6	3	4	4	4	5	1	3	4
-	+8												

r	n(r)						
	obs.	theor.					
0	0	0.8					
1	7	4.4					
2	9	11.4					
3	21	21.0					
4	3 5	27.8					
5	34	29.5					
6	19	26.0					
7	16	19.7					
8	6	13.0					
9	11	7.5					
10	4	4.0					
11	5	1.9					
12	1	0.8					
≥ 13	1	0.8					

No 49. $a = 6^{h}24^{m}$; $B = +6^{o}$. $s_1 = 4.3$; $\delta_1 = 8.5$;

I.
$$[N=1203; w_1=60; w_2=100.$$

$$s_1 = 2.8 \; ; \; \delta_1 = 7.3 \; ; \; s_2 = - \; ; \; \delta_2 = -]$$

		6		5		-4		3		2		1	
-6	2	1	0	2	5	7	5	8	2	8	2	6	3
-0	2	2	2	3	5	7	8	9	9	7	5	4	9
— 5	3	4	0	4	5	4	5	1	6	7	8	9	11
	6	2	4	4	5	4	4	2	7	8	15	9	8
4	7	5	5	12	7	7	7	13	8	7	5	7	9
-1	8	4	5	4	8	8	6	13	8	7	5	6	9
-3	7	5	10	10	9	7	9	10	12	10	9	10	6
3	7	10	9	10	7	16	9	13	6	11	14	9	8
-2	6	9	9	11	11	8	6	8	8	13	12	8	16
	11	10	3	8	9	7	7	8	4	8	8	4	4
1	3	7	10	7	2	. 8	10	4	9	8	14	5	7
,	3	7	9	7	12	9	6	5	10	7	9	10	6
0	7	9	9	7	12	6	5	4	7	6	8	5	7

_	=	
r		n(r) theor.
0- 1	2+ 2	0.2+ 1.0
2— 3	10+ 6	3.5+ 8.3
4- 5	15+17	14.5+20.9
6- 7	13 +28	24.7 + 25.2
8- 9	23 +22	22.5 + 17.8
10—11	12+ 5	12.7+8.2
12—13	5+4	4.9 + 2.7
14—15	2+1	1.4 + 0.6
16—17	2 + 0	0.3 + 0.1
≥18	0	0.1

III.
$$[N=1368; w_1=7; w_2=72.$$

$$s_1 = -; \ \delta_1 = -; \ s_2 = -; \ \delta_2 = -]$$

		-6		5		-4		3	_	-2		-1	
0	6	5	9	7	6	11	7	7	10	8	10	7	11
	6	4	5	7	11	6	5	8	5	4	6	7	6
+1	8	8	9	10	9	8	4	10	5	6	7	4	7
+2	8	4	7	10	12	11	4	7	5	7	13	7	7
+2	0	4	4	9	7	8	9	11	10	10	8	9	7
ور	9	12	12	9	18	14	11	8	11	5	8	14	9
+3	3	9	10	16	9	15	8	12	6	10	12	9	6
	6	6	8	7	7	21	10	6	12	8	11	12	7
+4	5	3	4	9	10	14	12	9	8	4	12	9	16
+5	9	8	6	5	6	11	11	12	7	11	10	11	12
+9	8	4	12	15	7	10	9	10	10	7	7	9	8
1.0	3	1	6	6	7	6	6	9	11	11	9	11	10
+6	4	4	4	5	4	2	3	7	6	4	2	7	7
+	S			,									

r	obs.	n(r) theor.
0— 1	1+ 1	0.1 + 0.5
2- 3	2+4	1.8+ 4.5
4 5	16+10	9.3 + 15.1
6- 7	19+26	20.3 + 23.4
8 9	17+20	23.9 + 21.2
10-11	16+15	17.4 + 12.7
12—13	12+ 1	8.6 + 5.4
14—15	3 + 2	3.1 + 1.7
16—17	2 + 0	0.8+0.4
≥18	2	0.4

N = 5708; $w_1 = 3.10^5$; $w_2 = 10^9$. $s_2 = 4.0$; $\delta_2 = 67.3$

II. $[N=1591\,;\;w_1=130\,;\;w_2=1800.$ $s_1=1.5\,;\;\delta_1=10.7\,;\;s_2=2.2\,;\;\delta_2=69.0]$

()	+	-1	_+	-2	+	-3	+	-4	+	-5	+	-6
6	5	8	5	12	8	5	12	9	6	11	5	2	7
- 0	6	4	6	10	11	8	7	3	7	7	6	9	3
5	9	9	7	9	6	10	10	8	3	2	8	9	3
-5	4	9	10	4	11	10	5	9	10	7	11	8	6
	7	5	11	10	12	12	8	6	9	1 0	6	8	7
-1	12	9	9	9	11	7	5	13	8	15	6	7	7
 3	8	6	6	6	9	13	9	11	16	15	7	14	6
— J	9	7	9	12	14	1 8	8	14	18	17	9	13	14
9	4	13	5	15	16	9	10	9	9	11	12	9	10
	16	9	4	7	17	8	12	12	3	21	12	22	9
1	8	11	10	9	9	12	11	13	13	11	7	17	12
1	11	7	9	9	7	7	12	5	16	8	14	14	11
0	3	7	12	8	14	15	12	10	15	8	12	16	6

r	obs.	n(r) theor.
0 1	0	0.1
2- 3	2 + 6	0.6+ 2.0
4- 5	5+ 9	4.5 + 8.4
6— 7	14+19	13.3+18.0
8- 9	16+27	21.0 + 22.1
10-11	12+13	20.9+17.9
12—13	16+ 6	14.1 + 10.2
14—15	7+5	7.0+4.4
16—17	5+3	2.6+1.4
18-19	2+ 0	0.7+0.4
≥20	2	0.4
		'

IV. $[N=1546; w_1=7; w_2=480.$

 $s_1 = -$; $\delta_1 = -$; $s_2 = 1.8$; $\delta_2 = 65.1$]

	0	+	-1	+	-2	+	-3	+	4	+	-5	+	-6
O	7	11	10	11	17	16	10	17	14	9	9	14	15
	10	8	12	8	11	17	<i>15</i>	11	18	13	8	16	15
+1	7	11	8	5	9	14	7	11	10	9	8	11	12
1.9	5	8	9	6	10	12	6	8	4	10	10	20	11
7-2	6	4	18	12	10	4	9	8	7	12	13	7	17
1.9	5	8		4			6	7	15	6	6	6	10
+0	13	7	8					8	12	15	8	8	9
	9	11	6					12	9	10	12	9	9
+4	10	10	9	10	11	11	11	6	7	10	5	11	7
	6	9	14	3	9	5	9	15	12	8	9	6	5
+9	8	7	6	6	9	9	6	3	12	7	8	12	4
+1 +2 +3 +4 +5 +6	5	6	12		12	5	6	7	5	7	10	4	6
十6	6	11	5	7	5	4	4	7	10	3	5	7	5
+	-8												

r		obs		$n(r) \ \ theor.$						
0—	1	0			0.2					
2	3	0 +	3	0.8	+	2.3				
4	5	8+	14	5.4	+	9.5				
6—	7	19+	17	14.8	+:	19.4				
8—	9	16 + 1	20	21.8	+2	22.5				
10-1	1	19+	15	20.3	+ 3	17.0				
12—1	3	13+	4	13.0	+	9.0				
14-1	5	5+	7	5.9	+	3.6				
16 - 1	7	2+	4	2.0	+	1.1				
≥18		3			0.8					

No 50. $\alpha = 6^{h}32^{m}$; $B = +8^{o}$. $s_1 = 4.6$; $\delta_1 = 25.7$;

I. [N = 2806; w_1 = 37; w_2 = 180. s_1 = -; s_1 = -; s_2 = 7.5; s_2 = 87.9]

	6	_	-5		-4		-3		-2		-1		0	r	obs.	n(r)
	18 18	16	12	16	18	24	20	18	16	20	22	10		0 1		theor.
 6	14 14	22	13	11	12	24	24	22	19	16	22	11		$0-1 \\ 2-3$	$\begin{vmatrix} 0 \\ 0+1 \end{vmatrix}$	_
	16 18	14	18	16	16	12	18	22	16	26	18	10		4- 5	Ö	0.1
5	21 9	12	12	17	13	21	22	17	22	21	19	23		6— 7 8— 9	$0+1 \\ 1+4$	
	11 11	15	16	15	15	15	21	27	21	21	20	20		10—11		•
-4	17 7	10	14	16	19	20	27	13	21	17	18	14	8 1	12-13		9.6 + 12.3
	1 4 9	21	12	15	18	22	14	10	10	11	16	14		14 - 15 $16 - 17$		14.5 + 16.1 $16.7 + 16.3$
3	19 15	21	20	20	14	17	20	21	13	23	9	13		18—19	11+ 7	14.9 + 13.0
	17 15	24	16	16	17	17	18	12	13	12	13	13		20 - 21 $22 - 23$		10.8 + 8.5 $6.4 + 4.6$
2	22 20	28	20	23	19	13	15	16	14	17	11	10		24 - 25	, ,	3.2+2.1
	19 17	17	17	20	20	12	17	15	13	14	3	13		26-27		1.3 + 0.6
-1	13 25	11	19	22	15	14	15	21	13	17	13	11		≥28	1	0.6
	8 16	21	15	23	24	17	15	13	12	10	9	13				
01							_	ے مصنب	=							

III. [N=2399; $w_1 = 280\ 000$; $w_2 = 10^7$. $s_1 = 3.0$; $\delta_1 = 26.3$; $s_2 = 5.2$; $\delta_2 = 89.3$]

0.	<u>6</u>		-5 	-	-4	_	-3	_	-2		-1		0	
Ŭ	20 2	1 21	.24	19	9	22	14	12	13	13	8	11		-
	16 18	3 23	17	29	13	14	15	12	8	9	10	11		
+1	18 2	1 22	24	18	24	19	13	21	12	11	14	10		
	16 18										12	11		
+2	12 17	7 12	24	23	7	16	16	12	13	14	10	7		
1.9	10 9	9 12	21	18	20	23	18	15	12	9	18	14]
-1-9	16 13	3 9	10	10	9	5	15	10	25	20	11	21		1
	12 12	2 12	14	12	11	12	6	10	25	19	13	14		1
	13 13	3 15	16	15	9	16	8	22	20	14	15	15		1
1 5	12 13	3 7	8	14	11	10	11	16	13	22	15	18		,
+9	12 1	18	7	7	23	13	10	12	15	10	11	21		2
	2 1	11	7	16	16	11	9	16	11	16	20	22		2
+0	6 9	12	7	7	7	5	16	13	22	16	6	17		
+	δ			ينگ نسس										

, 4		
r	obs.	$n(r) \ \ theor.$
0— 1	0	_
2- 3	1+0	0.01 + 0.05
4— 5	0+2	0.2 + 0.6
6- 7	3+ 9	1.3 + 2.7
8 9	4+10	4.7 + 7.5
10—11	11+14	10.5 + 13.7
12—13	18+13	16.2 + 18.1
14—15	11+ 9	18.0+17.1
16—17	16+ 3	15.2+12.6
18—19	10+3	9.9+7.4
30—21	6+7	5.3 + 3.5
22—23	7+4	2.3 + 1.5
2425	4+3	0.9+0.5
≥26	1	0.4

 $N = 10\,246$; $w_1 = 10^9$; $w_2 = 10^{12}$. $s_2 = 15.2$; $\delta_2 = 88.1$

II. $[N=2782\,;\;w_1=2.5\,;\;w_2=5.$ $s_1=0.8\,;\;\delta_1=32.0\,;\;s_2=0.5\,;\;\delta_2=106.0]$

(0	+	1	+	2	+:	3	+	4	+;	5	+6	3		$oxed{r}^{-}$		n(r)
	18	18	12	16	14	14	20	20	14	16	10	12	12	$+\alpha$		obs.	theor.
6	18	17		16				19			9	8	8		0- 7		1.3
								_		11	_	Ŭ	Ü			1	1.6+ 2.9
— 5	ł											8	15			· ·	4.8+ 7.1
	20	22	12	17	18	12	23	14	17	22	20	10	11		12—13	11+7	9.9+12.6
1	23	14	16	16	28	14	24	16	16	21	21	19	10		14-15	20+13	14.8+16.3
+	14	14	21	20	21	15	17	11	16	19	20	20	13		16—17	21+9	16.8+16.2
	14	13	19	14	20	11	16	16	15	18	10	18	18			•	14.8 + 12.7
 3				15								17	11	l			10.6+ 8.3
										17						-	6.2 + 4.4
— 2															24—25	•	3.0+ 2.0
										25		13	18		2627		1.2 + 0.7
1	8	12	12	16	18	21	15	19	18	22	17	14	16		28	2	0.4
	11	14	12	12	8	19	20	18	14	16	16	19	19		\geqslant 29	0	0.3
	13	9	9	15	14	13	11	14	28	18	16	20	13				
0										_							

IV. [N=2259; $w_1=100$; $w_2=70$. $s_1=0.8$; $\delta_1=17.3$; $s_2=2.0$; $\delta_2=81.0$]

	0	+1	l	+2	2	+8	3	+4	Ł	+5	•	+6	3	<u>+</u> α	r		n(r)
0	11	17	11	15	14	17	19	22	21	14	18	17	20	$\neg u$	ļ	obs.	theor.
	12	12	13	17	17	17	20	14	13	20	23	16	16		0— 2		_
+1			11												3- 4		0.1 + 0.4
												20	17		5— 6	5+2	0.9 + 2.1
1.9	5	14	11	12	13	14	17	22	23	14	12	16	13		7— 8	1+10	4.3 + 6.8
7-2	9	21	10	12	13	10	15	<i>22</i>	18	11	15	12	11		9—10	11 + 15	9.8 + 13.3
	14	9	10	13	8	17	24	16	19	11	18	8	11		11-12	13+14	16.0 + 18.1
+3	14	14	6	15	15	17	13	11	8	8	10	13	5			•	$18.8 \cdot 17.4$
			10						15		13	9	_		15—16	11+ 8	15.7 + 13.3
+4												9	12		17—18	14 + 9	10.5 + 7.7
,]	19	15	16	15	13	8	17	11	9	11	16	7	9		19—20	5 + 6	5.4 + 3.7
	19	13	17	9	8	13	14	9	10	5	12	13	12		21 - 22	2 + 3	2.3 + 1.4
+5	20	14	12	13	12	12	16	14	18	12	8	11	14		≥?3	3	1.2
		13	18	12	10	19	10	13	18	9	11	5	6				
+6	18	14	18	14	9	13	10	8	10	9	8	8	5				
+	8												اجسسها	, ,			

No 51. $a = 6^{h}40^{m}$; $B = +10^{0}$. $s_1 = 18.2$; $\delta_1 = 24.7$;

I. $[N=2387~;~w_1=100~000~;~w_2=1000.$ $s_1=2.8~;~\delta_1=25.0~;~s_2=1.0~;~\delta_2=94.0]$

	<u>-6</u>			5		-4		-3	_	2		-1	(
c	10	8	6	6	10	9	12	21	19	16	7	9	14
									6				19
5	10	13	9	12	14	7	5	8	15 21	15	14	17	10
-5	10	7	10	7	11	8	18	12	21	• 7	16	8	
,	14	18	11	14	13	5	16	16	19 13	16	21	24	12
+	13	15	8	13	17	11	16	16	13	19	24	25	17
9	14	12	19	20	10	15	18	13	19	15	15	18	11
-5	17	13	17	13,	20	21	19	10	19	16	15	20	17
9	18	13		15							7	16	14
-2	23	17	15	21	14	13	16	6	19	15	14	7	10
,	18	13	15	17	11	16	11	17	17	7	14	21	8
_1	13	16	21	19	22	19	22	10	15	12	15	16	10
0	13	19	15	12	21	16	12	8	20	14	15	16	13

r	$\begin{vmatrix} n \\ obs. \end{vmatrix}$	(r) theor.
$\begin{array}{c} 0-4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ \geqslant 24 \\ \end{array}$	0 3 5 8 7 4 13 9 9 15 13 17 16 11 7 13 4 9 2 1	0.2 0.6 1.4 2.8 4.9 7.7 10.8 13.9 16.5 18.0 17.0 12.5 9.8 7.3 5.1 3.4 2.2 1.3 1.5

III. [N=2145; $w_1 = 48\ 000$; $w_2 = 22\ 000$. $s_1 = 6.8$; $\delta_1 = 25.9$; $s_2 = 2.2$; $\delta_2 = 84.5$]

	-6												
+1	13	19	16	23	20	20	14	12	22	13	12	5	7
	20	21	8	15	14	15	17	11	13	12	10	12	13
+1	11	16	28	19	20	18	12	13	19	19	11	8	10
. 9	22	11	14	8	12	14	10	13	17	21	14	20	15
+2	12	14	11	15	23	15	10	19	8	11	17	18	10
1.0	12	18	10	17	14	23	16	18	14	13	13	12	15
+9	11	9	14	8	18	9	11	12	5	8	15	19	14
	14	14	9	11	12	14	11	8	8	13	11	8	14
+4	11	16	10	9	15	16	7	13	13	12	20	13	17
1 5	7	12	13	12	12	9	8	16	16	14	17	13	11
+0	10	7	11	18	5	6	13	8	14	14	10	14	14
1 0	6	7	5	6	10	7	12	9	13	17	16	6	9
+2 +3 +4 +5 +6	3	7	2	3	8	8	2	5	10	9	9	16	14
'													

r	obs.	n(r) $theor.$
0-1	0	
2 3	2 + 2	0.1 + 0.3
4 5	0+5	0.6 + 1.4
6 7	4 + 7	3.1 + 5.7
8 9	13 + 9	8.8 + 12.1
10—11	11 + 14	15.7 + 17.8
12—13	16 + 16	19.1 + 18.6
		$16.5 \!+\! 14.1$
16-17	9+7	11.4 + 8.6
18—19	6+ 6	6.0 + 4.0
2021	6+2	2.7 + 1.6
22—23	2 + 3	0.9 + 0.4
\geqslant 24	1	0.3

N = 8693; $w_1 = 10^{17}$; $w_2 = 10^{10}$. $s_2 = 3.2$; $\delta_2 = 87.5$

II.
$$[N=2291~;~w_1=25~000~;~w_2=150.$$
 $s_1=2.8~;~\delta_1=22.1~;~s_2=--~;~\delta_2=-]$

()	+	1	+	2	+	3	+	4	+	.5	+	6	$+\alpha$	r	obs.	n(r) $theor.$
В	18	15	10	7	11	17	10	15	6	5	6	7	11		0- 3		0.1
0	15	7	17	11	9	9	4	11	11	12	5	7	5				0.3 + 0.8
5	9	14	13	13	12	22	10	13	11	4	4	6	7			4 + 7	
	17	17	20	10	25	9	11	11	15	12	8	9	8		8- 9	3+ 7	6.3 + 9.2
.1	12	15	24	13	17	9	12	12	12	8	12	16	10			·	12.6 + 15.4
	14	12	14	11	11	15	19	1 5	18	18	11	6	7			,	17.7 + 18.7
2	19	14	13	19	15	16	22	14	18	12	12	12	15			·	17.6 + 16.1 $13.8 + 11.1$
-3	17	15	22	17	19	11	16	16	16	19	16	10	10		i	,	8.2 + 5.9
9	17	11	15	15	15	12	10	15	24	14	12	12	5			•	4.0 + 2.6
2	15	14	20	10	21	14	13	15	11	11	14	15	15		22—23	3+ 1	1.5+0.9
1	13	14	11	9	17	13	15	15	7	19	14	23	24		≥24	5	1.0
1	21	15	14	17	17	16	12	26	15	18	18	13	15				
_	15	12	17	13	15	20	14	19	20	19	10	12	10				

IV. $[N = 1870; w_1 = 600; w_2 = 7.$

 $s_1 = 5.8$; $\delta_1 = 24.3$; $s_2 = -$; $\delta_2 = -$]

C)	+:	1	+	2	+ ;	3	+			5	+	6	$+\alpha$	r	n obs	$(r) \atop theor.$
	13	16	12	11	12	11	14	1 9	13	9	15	7	16	$+\alpha$			theor.
1	11	10	16	14	15	8	19	18	4	15	16	15	12		$\begin{array}{c} 0 \\ 1 \end{array}$	$0 \\ 1$	0.1
+1	14	13	10	12	7	14	11	13	11	10	11	11	11		2 3	0	$\begin{array}{c} 0.3 \\ 0.6 \end{array}$
	i												12		4	4	1.8
+2	13	ΙO	14	12	14	8	15	11	14	14	10	14	14		5	9	3.8
+2	14	13	10	11	10	14	12	15	17	17	14	8	5		6 7	8	6.7
													_		7	10	10.8
+3	10	9	19	16	10	7	13	9	16	10	4		9		8	9	14.8
+3	47		10	10	9	1.4	1.4		0	11	=	10			9	12	18.2
	17	11	12	12	9	14	14	11	9	11	7	12	4		10	19	20.1
	10	в	8	12	15	10	10	14	10	8	9	5	9		11	21	20.3
4	10	U	J	10	10	10	10	1.1	10	O					12	19	18.7
7.2	12	9	15	4	13	11	7	16	10	15	6	15	10		13	12	16 0
					_	_	_				_	_			14	14	12.4
	12	17	13	11	7	8	7	13	10	12	6	6	6		15	11	9.4
+5	10	10	17	10	0	7	Ω	5	11	5	10	9	6		16	8	6.4
	10	19	1 /	14	0	•	Э	5	11	Ð	10	9	U		17	5	4.2
+5 +6	10	13	10	11	15	12	14	11	11	7	10	8	1		18	2	2.6
46	1		-0												19	5	1.5
' "	5	13	12	11	9	7	5	5	6	8	11	6	5		$\geqslant 20$	0	1.8
														Į.			
+	· 8																

I. $[N = 1002; w_1 = 700; w_2 = 320.$ $s_1 = 4.0; \delta_1 = 9.2; s_2 = 1.0; \delta_2 = 52.0]$

_	-6			5	4	<u>L</u>		3		2		-1	
•	1	0	4	3	5	5	8	3	3	4	2	9	6
6	4	2	5	6	4	6	5	2	3	7	3	3	5
_	2	4	6	4	6	7	6	3	5	7	3	1	4
—ə	4	5	8	5	9	4	3	3	5	3	10	6	9
	6	2	3	5	9	6	8	2	4	7	4	6	4
-4	1	3	7	7	4	3	3	12	4	6	3	5	9
9	3	4	2	9	10	8	7	3	7	11	1 0	11	7
_3	6	2	7	6	4	6	5	7	8	7	9	6	5
9	5	3	7	8	6	4	5	7	4	4	9	1 3	12
-2	3	5	9	6	12	7	6	9	8	5	8	10	6
,	7	9	8	8	<i>1</i> 5	5	9	4	8	6	6	9	8
-1	3	5	7	5	7	5	8	9	3	7	8	7	14
0	3	8	7	6	11	3	8	11	6	3	6	11	5

r		(r) theor.
0	1	0.5
1	3	2.7
2	8	7.9
3	25	15.6
4	20	23.0
5	22	27.6
6	24	27.3
7	21	23.2
8	16	17.1
9	14	11.4
10	4	6.8
11	5	3.7
12	3	1.8
13	1	0.8
14	1	0.3
≥ 15	1	0.2

III. $[N=1024; w_1=2; w_2=10.$

$$s_1 = 2.0$$
; $\delta_1 = 9.5$; $s_2 = 0.8$; $\delta_2 = 52.0$]

•		6	_	5	_	4		3	_	-2		1		0
0	5	12	10	8	7	4	4	8	7	4	6	8	12	
	6	4	4	8	3	7	3	5	4	5	5	5	7	
+1	6	14	8	9	8	6	10	1	5	10	9	4	3	
	12	13	7	4	5	6	3	7	6	9	10	8	6	
+2	10	5	4	10	4	8	4	9	8	10	10	5	4	
	5	2	3	4	6	6	6	6	6	9	8	2	7	
+3	3	4	6	6	9	3	4	9	5	6	11	8	9	
	8	3	7	6	8	7	8	7	7	6	5	11	10	
+4	2	6	4	5	3	5	9	6	5	5	9	8	5	İ
1.5	2	4	5	6	7	8	7	6	в	9	10	8	6	l
+5	3	5	3	2	4	8	7	5	в	7	5	6	13	İ
-1 6	3	5	8	8	5	6	4	6	2	5	3	8	5	
70	2	5	2	3	2	1	5	9	5	5	2	4	4	l
+	-δ													•

r		(r) theor.
0	0	0.4
1	2	2.4
2	10	7.3
3	16	14.6
4	21	22.0
5	29	27.0
6	27	27.4
7	15	23.7
8	19	17.9
9	12	12.1
10	10	7.4
11	2	4.0
12	3	2.1
13	2	1.0
≥14	1	0.6
	•	

N = 4043; $w_1 = 10^7$; $w_2 = 10^7$. $s_2 = 2.6$; $\delta_2 = 50.8$

II.
$$[N=994; w_1=13; w_2=2.5.$$

 $s_1=0.8; \delta_1=5.3; s_2=0.8; \delta_2=48.0]$

_	0	+	1	+2	}	+3	3	+	4 .	+	5	+6	3	$+\alpha$	r		(r)
	4	5	1	3	4	7	2	6	2	3	5	1	7	٦ ۵		obs.	theor.
— 6	8	5	4	5	5	10	7	3	6	4	4	1	2		0	0	0.5
	0	J	**	3	J	10	•	3	U	4	4	1	2		1	5	2.8
_	2	8	5	4	1	7	3	4	5	7	4	3	3		2	12	8.1
5	12	8	5	4	4	6	6	10	4	6	2	5	2		3	12	15.9
															4	21	23.4
	9	5	12	2	7	9	3	4	7	7	6	9	6		5	31	27.8
-4	8	6	3	5	4	8	8	8	8	5	10	9	5		6 .	$2\vec{2}$	27.3
		r		-									_		7	22	23.0
-3	2	5	4	7	4	5	4	2	6	6	7	5	5		8	17	17.0
- 3	7	9	8	3	7	6	5	5	7	6	5	7	2		9	14	11.1
	9	7	8	4	8	10	7	7	8	5	5	5	6		10	6	6.6
2	_	-											-		11	4	3.5
	10	7	10	6	2	5	8	9	5	9	4	7	9		12	2	1.7
	8	6	7	6	8	9	9	9	11	9	5	5	2		13	0	0.8
-1	_		0	4											≥14	1	0.5
	5	3	6	4	6	9	5	6	14	11	4	3	5				
	6	5	6	8	6	3	8	11	4	7	7	11	1				
01	L													l	ļ		

IV.
$$[N=1023; w_1=720; w_2=5400.$$

 $s_1=9.0; \delta_1=11.9; s_2=-; \delta_2=-]$

								-		•	-		•	• •	•	•	
	0	+	1	+	2	+8	3	+	4	+	5	+6	3	$+\alpha$	r	$ \begin{array}{c} n \\ obs. \end{array}$	(r) theor.
0	5	8	10	5	8	3	3	13	12	9	11	7	7	1 **		<u> </u>	
	6	5	6	7	6	10	5	в	3	14	8	8	4	i	$0 \\ 1$	1 1	0.4 2.4
+1	6	10	3	8	9	4	6	4	в	8	4	9	6		$\frac{1}{2}$	9	7.3
															3	22	14.6
+2	6	5	8	7	9	13	8	11	6	5	2	5	8		4	28	2 2.0
72	18	6	4	5	4	6	6	8	10	5	8	8	2	l	5	22	27.0
	8	4	6	9	4	4	8	3	4	5	3	8	4		6	24	27.4
+3						0				0					7	14	23.7
	6	16	4	13	7	8	9	8	5	6	7	6	4		8	18	17.9
	7	10	3	9	4	11	4	4	6	9	5	6	2		9	10	12.1
+4	8	3	8	9	8	3	7	11	6	4	5	6	2		10	7	7.4
													i		11	4	4.0
+5	7	13	13	7	5	4	8	3	7	5	8	3	5		12	1	2.1
70	4	6	7	9	4	1	4	5	4	4	5	7	5		13	5	1.0
	6	5	6	5	10	3	2	2	8	2	4	0	2		14	1	0.4
+6															15	0	0.1
	4	4	7	3	5	8	4	10	4	8	3	2	3		\geqslant 16	2	0.06
+	8														I		
•																	

No 53. $a = 6^{h}56^{m}$; $B = +13^{o}$. $s_{1} = 6.8$; $\delta_{1} = 18.4$;

I.
$$[N=2092\;;\;w_1=70\;;\;w_2=500.$$
 $s_1=0.8\;;\;\delta_1=18.7\;;\;s_2=-\;;\;\delta_2=-]$

_	-6 -5 $-$			4 —3			-2		1		(
	8	11	12	17	6	12	11	10	9	7	8	9	12
-6	9	10	12	12	16	8	13	7	10	11	18	12	15
	7	13	11	12	17	13	13	15	17	11	13	9	6
o	13	13	9	10	11	18	14	8	7	6	16	15	5
4	14	14	24	10	9	11	24	15	13	12	4	14	7.
-4	8	15	18	14	12	11	12	14	18	16	10	13	9
9	15	17	23	15	12	16	12	.10	12	20	8	16	13
5	9	14	17	18	17	16	14	16	14	16	11	11	10
9	16	18	15	18	10	12	13	12	14	11	9	15	16
2	16	17	16	13	15	16	16	10	9	9	16	13	10
,	15	10	19	18	11	12	13	11	8	14	17	17	9
-1	16	11	4	7	19	14	13	13	8	9	8	11	6
	14	13	12	3	17	6	8	. 8	9	8	13	9	4

r		n(r)
	obs.	theor.
0-2	0	0.1
3 4	1+ 3	0.3 + 0.7
5 6	1+ 5	1.7 + 3.6
7— 8	6 + 12	6.4 + 9.8
9-10	15 + 12	13.2 + 16.7
11—12	15 + 17	18.5 + 19.4
13—14	18 - 13	18.3 + 16.0
15—16	11+16	13.3 + 10.4
17—18	10 + 8	7.7+ 5.2
19-20	2 + 1	3.5 + 2.7
21—22	0 + 0	0.7 + 0.3
\geqslant 23	3	0.3

III. $[N = 2072; w_1 = 260; w_2 = 40.$

$$s_1 = -$$
; $\delta_1 = -$; $s_2 = -$; $\delta_2 = -$]

	(6		5		4		3		2		1	
0	7	13	14	2	11	15	11	8	10	14	12	10	10
	8	16	12	14	18	9	9	13	11	4	12	8	5
+1	14	10	14	7	11	12	10	7	7	13	16	5.	7
	15	7	13	12	12	12	15	16	11	12	7	14	11
$+^{2}$	9	18	12	11	16	13	12	16	8	13	11	14	15
	8	7	16	10	15	23	15	7	18	16	14	14	9
+3	13	12	10	13	7	20	17	12	14	11	8	18	6
	19	16	7	9	18	10	17.	14	8	16	12	12	9
+4	6	12	8	8	11	8	19	7	14	13	11	8	14
	17	11.	14	10	9	16	13	11	16	16	10	18	7
+5	12	19	16	10	19	16	6	15	16	11	13	10	15
	11	17	10	6	20	17	18	18	7.	16	9	15	7
+1 +2 +3 +4 +5 +6	15	13	9	11	12	14	22	9	25	10.	10	21	11
+	-δ												

r	obs.	n(r) = theor.
0- 1	0	_
2— 3	1+0	0.1 + 0.3
4 5	1+2	0.8+ 1.8
6- 7	4+15	3.8+6.7
8- 9	11+10	10.2 + 13.7
10—11	15 + 17	17.0+18.8
12—13	17+12	19.4+18.2
14—15	15+10	15.8+13.0
16—17	16+ 5	10.1 + 7.3
18-19	8+4	4.9 + 3.3
2021	2+1	2.0+1.1
22—23	1+ 1	0.6 + 0.3
≥24	1	0.2

N = 7336; $w_1 = 10^6$; $w_2 = 10^6$. $s_2 = 0.8$; $\delta_2 = 78.0$

II.
$$[N=1504; w_1=13; w_2=7.$$
 $s_1=3.5; \delta_1=16.9; s_2=-; \delta_2=-]$

)	+	1	+	2	+	3	+	4	+	5	+6		+6		+6		+α	r	obs.	n(r) theor.
	11	11	11	8	4	5	5	10	4	. 6	6	5	8		0- 1	<u> </u>	0.2				
-6	13	13	6	.8	8	6	3	10	5	7	9	9	6		10-1 $12-3$	_	1				
_	19	12	13	13	8	10	5	2	4	7	9	4	3			,	6.2 + 10.7				
- 5	10	7	11	7	12	13	13	13	7	6	9	7	6				16.1 + 20.6				
٠	10	13	5	9	9	8	12	9	6	10	5	10	5		8— 9	21+16	22.4 + 22.6				
-4	12	8	13	12	6	9	10	10	8	7	7	6	8			١ .	19.8+16.0				
		11		8	15	11	4	10	8	2	7	12	5	ł			12.0 + 8.0				
— 3	10	9	8	6	11	1 5	13	10	10	10	6	6	4		14-15 $16-17$		5.2 + 3.1 1.7 + 0.9				
	12	10	4	15	9	14	8	6	9	12	8	3	5		>18 ≥18	$\begin{bmatrix} 5 + 0 \\ 2 \end{bmatrix}$	0.6				
— 2	8	9	11	7	16	16	7	9	5	8	7	7	5	i		1					
	11	11	11	5	8	11	13	13	8	11	11	8	10								
—]	6	7	14	11	12	14	11	19	12	11	4	6	6								
	9	7	11	8	5	10	13	15	5	8	7	9	9								
0	!													•							

IV. $[N=1668; w_1=11; w_2=12.$ $s_1=2.5; \delta_1=20.4; s_2=0.8; \delta_2=78.0]$

. (0	+	1	i	2	_1.	3	+ 4	4	4 ;	5	٦ (6	+ α	r	obs.	$n(r) \ theor.$
О	6	11	4	4	13	5	11	15	6	6	11	9	14	1 00	0- 1		0.1
	12	9	14	14	8	10	8	5	17	8	8	7	5		$\frac{0-1}{2-3}$	Ū	0.1 0.5+1.4
+1	8	13	8	5	10	9	14	14	11	6	8	9	7			'	3.5 + 6.9
	12	16	7	15	13	9	11	11	9	9	6	8	5		6— 7	14+10	11.3+15.9
+2	14	13	11	3	10	5	8	4	9	5	6	2	5				19.7 + 21.4
	13	17	13	13	8	12	6	12	10	11	7	9	4				21.3+19.0
+3	11	14	12	10	6	10	9	10	8	10	11	6	6				15.7 + 11.9
	5	9	12	9	5	18	8	12	6	10	14	11	6			· ·	8.4 + 5.5 $3.4 + 2.0$
+4	10	11	10	11	5	8	10	7	10	15	8	8	8			•	1.1 + 0.6
	11	11	17	18	11	11	11	12	10	13	9	10	7	l	≥20		0.5
+5	14	13	13	10	5	6	12	8	10	12	8	8	9		,		
		17	9	9	11	12	12	10	7	12	7	11	7				
+6	13			17				9	11	10	12	8	6				
-	-8													E			

 $a = 7^{h}4^{m}$; $B = +15^{o}$. № 54. $s_1 = 3.2$; $\delta_1 = 15.3$;

I. $[N=1554; w_1=40; w_2=3.$ $s_1 = -$; $\delta_1 = -$; $s_2 = 0.8$; $\delta_2 = 65.2$]

	_	6		-5		4		3		2		1	(
	6	11	7	10	10	14	11	14	11	11	9	8	9
-6	8	10	9	9	10	9	13	2	6	10	8	14	10
_	7	11	5	6	11	5	6	4	10	3	12	6	5
— 5	7	10	9	3	5	11	3	8	7	10	8	8	8
	9	7	12	9	17	11	11	3	9	10	9	3	9
-4	7	6	9	14	12	11	11	8	10	13	8	4	15
	6	7	14	6	14	13	8	11	13	10	13	5	8
-3	13	14	12	8	11	8	11	7	8	8	8	8	7
	11	9	7	6	10	10	15	10	11	9	6	10	8
-2	10	16	10	13	9	19	9	12	7	9	8	6	4
	19	14	12	8	8	13	12	6	11	11	8	7	10
-1	13	6	10	10	11	6	6	6	4	12	3	5	16
	8	13	12	7	10	12	14	6	6	11	6	10	3

	n	(r)
r	008.	theor.
$\begin{array}{c} 0 - 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ \geqslant 19 \\ \end{array}$	0 1 7 4 6 19 13 23 17 23 20 10 10 9 2 1	0.1 0.7 2.3 5.1 9.3 14.4 19.0 21.6 22.5 20.5 17.3 13.2 9.3 6.1 3.8 2.1 1.2 0.6 0.4

III. $[N=1650; w_1=12; w_2=7.$ $s_1 = 1.2$; $\delta_1 = 18.4$; $s_2 = 0.8$; $\delta_2 = 68.0$]

0.	_	6		5		4		3		2		1	(
- 1	6	10	12	17	10				•	8	9	6	2
	14	11		8							7	7	4
+1	11	12	14	12	9	10	4	8	11	7	7	6	8
	9	10	11	6	11	13	10	10	11	5	6	10	10
+2	8	8	7	10	9	11	15	15	14	12	7	8	6
1.9	13	10		7							12	9	9
+3	10	10	14	16	12	9	13	10	8	14	6	7	8
	11	15	8	11	8	11	5	12	14	5	11	5	2
+4	14	11	11	9	13	15	14	12	12	10	7	15	11
1.5	3	6	8	8	15	15	9	22	10	6	13	11	16
+5	12	6	10	10	9	13	14	15	6	8	7	10	12
اما	8	4	13	7	9	7	9	7	6	14	6	13	7
.+0	6	1	7	6	6	7	9	10	6	8	4	9	10
+	δ												

, ,		
r	obs.	n(r) theor.
0— 1	0+1	0.1
2- 3	2+ 0	0.5+1.5
4 5	5+4	3.7+7.3
6- 7	17+16	11.8 + 16.4
8 9	17+16	20.0+21.5
10—11	25+17	21.3+18.8
12—13	13+11	15.3+11.5
14—15	12+8	8.0+ 5.3
16—17	3+1	3.2 + 1.9
≥18	1	1.8

N = 6103; $w_1 = 10000$; $w_2 = 10^6$. $s_2 = 4.2$; $\delta_2 = 66.3$

II.
$$[N=1476\;;\;w_1=-\;;\;w_2=6.$$
 $s_1=-\;;\;s_2=0.8\;;\;\delta_2=58.8]$

()	+	-1	4	-2	+	-3	+	-4	+	-5	+	-6	
0	6	8	4	10	2	9	5	10	8	6	10	6	3	'
6	16	7	14	8	7	9	10	11	6	2	10	9	8	
	8	11	11	12	10	12	9	7	6	12	8	6	7	İ
5	10	6	4	14	12	14	11	7	11	9	7	9	5	İ
	8	11	7	10	12	9	13	13	6	8	14	14	7	
	7	7	10	6	10	7	9	11	11	10	8	9	8	İ
_2	7	5	10	8	10	6	7	10	4	9	16	3	4	
3	10	13	5	7	9	12	7	15	13	11	5	9	9	
_2	6	6	12	10	8		9		11	10	5	8	5	
_2	11	7	5	11	7	9	12	12	10	4	11	9	6	
1	4	6	8	13	6	6	7	6	11	16	5	6	9	
	2	5	4	11	11	13	7	6	12	15	12	6	11	
0	7	7	10	6	8	6*	14	13	11	13	11	9	5	

r		(r) theor.		
	008.	ineor.		
0—1	0	0.3		
2	· 3	1.0		
3	2	3.0		
4	7	6.7		
5	11	11.5		
6	22	16.8		
7	21	21.3		
8	16	22.8		
9	18	22.5		
10	19	19.3		
11	19	15.4		
12	11	11.3		
13	8	7.4		
14	6	4.7		
15	3	2.8		
\geqslant 16	3	2.7		
1				

IV.
$$[N = 1423; w_1 = 160; w_2 = 6000.$$

 $s_1 = 2.0; \delta_1 = 13.5; s_2 = 1.8; \delta_2 = 68.6]$

	0	+	1	+:	2	+	3	+	4	+:	5	+	6	<u>+</u> α
0	4	4	6	3	8	7	9	13	5	14	11	16	10	~
	7	9	8	6	2	7	8	7	12	14	16	10	3	
+1	6	10	6	7	12	4	10	9	20	17	16	16	8	
+2 +3	3	10	8	11	8	11	7	10	12	12	14	4	13	
+2	15	6	10	13	17	8	9	6	7	6	11	4	8	
1.9	10	6	10	7	8	6	4	11	6	11	9	6	3	
+3	9	7	11	9	14	19	5	8	12	6	. 6	7	6	
	7	7	13	8	10	7	7	9	6	6	10	12	13	
			8	4	10	4	6	12	7	5	4	5	8	
1 5	9	7	11	10	8	8	12	11	8	4	2	8	5	
+9	17	8	13	12	7	12	8	9	6	5	2	4	4	
+5	18	6	11	3	8	9	7	6	1	6	7	5	4	
+6	5	9	8	9	12	5	15	6	4	8	5	9	5	
	+8													•

r	obs.	$n(r) \ \ theor.$
0- 1	0+1	0.04+ 0.3
2- 3	2+6	1.4+ 3.7
4 5	14+11	7.9+13.1
6- 7	23 + 19	18.5 + 22.4
8- 9	23+14	23.4 + 22.0
10-11	13+10	18.5 + 14.1
12—13	11+6	9.9+6.4
14—15	4+2	3.9+2.2
16—17	4+3	1.2 + 0.6
≥18	3	0.6

№ 55. $a = 7^{h}12^{m}$; $B = +17^{0}$. N = 3271; $w_{1} = 14\,000$; $w_{2} = 5000$. $s_{1} = 13$; $\delta_{1} = 10.2$; $s_{2} = 50$; $\delta_{2} = 25.7$

_	<u>-6</u> -	-5	-4	3	-2	—1	0	+ 1	+2	+ 3	+4	+5	+6	ا م	r		n(r)
-6	16	24	24	22	14	16	12	11	14	17	13	21	6	$+\alpha$	0 5		theor.
— 5	22	24	28	27	16	16	16	24	18	20	16	18	15		0— 5 6 7	Ψ,	0.02 0.06 + 0.17
-4	3 4	29	25	23	20	19	24	24	12	9	17	12	18		8 9	1 + 2	0.4 + 0.7
— 3	25	18	30	21	27	21	13	16	18	13	7	12	23		10 - 11	•	1.4 + 2.4 3.9 + 5.8
-2	18	23	26	24	29	16	17	14	14	11	15	20	17				7.9 + 10.4
-1	36	21	24	19	28	20	21	23	18	25	27	27	10			•	12.4+14.2
0	<i>30</i>	25	26	21	23	29	12	15	23	26	20	23	15			•	15.1 + 15.4 14.9 + 13.8
+1	36	25	23	27	18	18	19	19	17	25	20	15	23		22—23	4+13	12.1 + 10.3
+2	21	18	25	26	14	18	28	18	23	14	23	10	16		$24 - 25 \ 26 - 27$	•	8.2 + 6.4 $4.8 + 3.4$
+3	16	14	27	18	20	20	25	27	24	22	20	17	9		1	•	2.3 + 1.6
+4	1 5	24	24	17	22	24	20	16	18	31	17	12	10		≥3 0	6	2.1
+5	10	1,3	19	23	14	15	20	20	23	17	16	16	7				
+6	18	17	16	14	18	14	20	17	14	13	15	14	8				
	$+\delta$					-											

No. 56. $a = 7^{\text{h}}20^{\text{m}}$; $B = +18^{\text{o}}$. N = 2667; $w_1 = 26000$; $w_2 = 10^{\text{f}}$. $s_1 = 10$; $s_1 = 7.1$; $s_2 = 17$; $s_2 = 24.2$

-	- 6	-5	<u>-4</u>	-3	-2	-1	0	+1	+2	+3	+4	+ 5 ·	+6	- + α
- 6	16	11	11	17	12	16	20	8	25	24	7	9	9	1 4
— 5	14	17	15	15	12	17	21	12	18	15	10	7	10	
-4	17	20	19	18	14	25	22	15	25	18	20	17	5	
– 3	14	20	17	21	14	27	18	12	16	22	18	11	16	
-2	15	19	20	13	21	19	19	16	12	17	13	13	15	ł
-1	23	8	15	17	13	14	11	25	25	21	17	21	15	ļ
0	18	16	20	13	25	27	19	20	32	2 2	14	19	8	·
+1	12	25	15	21	18	13	16	13	22	18	26	21	14	
+2	12	17	13	22	16	20	14	<i>23</i>	14	18	10	11	9	
+3	14	12	19	13	25	13	11	25	23	19	17	14	10	
+4	10	11	14	12	13	16	19	19	13	15	12	14	9	
+5	11	10	10	11	16	22	21	19	13	10	21	15	9	
+6	10	7	23	14	17	10	7	7	7	13	3	9	8	

r		$n(r) \ theor.$
0- 2	0	_
3-4	1+0	0.02+ 0.1
5— 6	1+0	0.3 + 0.5
7— 8	6+4	1.2 + 2.3
9—10	6+ 9	4.0 + 6.2
11—12	9+11	8.9+11.8
13—14	14 + 14	14.5 + 16.6
15—16	11+10	17.4 + 17.0
17—18	12+ 9	15.5 + 13.5
19—20	11+ 8	11.3+ 9.0
21 - 22	9+6	6.8 + 4.9
23 - 24	4+ 1	3.4 + 2.3
25-26	9+1	1.4+ 0.8
\geqslant 27	3	0.5
4		

+8

N₂ **57.**
$$a = 7^{\text{h}}28^{\text{m}}$$
; $B = +20^{\circ}$. $N = 1557$; $w_1 = 5$; $w_2 = 250$. $s_1 = 5$; $\delta_1 = 4.0$; $s_2 = 5$; $\delta_2 = 16.8$

_	-6 -	- 5	-4	<u>-3</u>	<u>2</u>	-1	0 -	 1 -	+2 -	+3 -	 4 -	 +5 -	+6	$+\alpha$
 6	6	9	11	7	10	13	7	15	11	10	10	5	5	1 0
-5	5	12	15	11	6	12	5	12	10	16	8	6	10	
-4	16	7	18	16	13	6	10	9	12	4	9	6	4	
—3	5	15	10	9	10	7	8	8	6	6	11	10	8	
2	5	11	10	13	6	8	7	5	10	11	5	12	9	
-1	13	11	15	7	6	8	4	4	11	7	7	16	9	
0	9	7	16	11	9	10	6	3	4	10	4	9	9	
+1	12	5	8	7	7	8	6	10	8	8	5	14	7	
+2	7	10	14	8	6	8	8	7	7	8	11	14	16	İ
+3	8	9	8	8	11	8	5	11	4	11	5	6	10	
+4	8	8	12	11	10	10	9	9	9	10	16	4	8	
+5	10	8	14	12	14	7	12	10	10	4	15	8	7	
+6	8	8	10	7	17	18	12	8	14	7	12	10	11	l
+	$-\delta$													

r	n(r) obs. theorem							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 9 12 13 19 26 14 24 15 11 4 6 5 7	0.8 2.2 5.1 9.3 14.4 19.1 21.6 22.5 20.5 17.2 13.2 9.3 6.2 3.8 2.1 1.2 1.4						

No. 58. $a = 7^{h}36^{m}$; $B = +21^{0}$. N = 1637; $w_{1} = 10^{7}$; $w_{2} = 10^{9}$. $s_{1} = 18$; $\delta_{1} = 3.4$; $s_{2} = 10$; $\delta_{2} = 19.8$

-	-6-	-5	<u>-4</u>	<u>3</u>	<u>2</u> -	-1	0 -	+1	+2	+3	+4	+ 5 ·	+6	
-6	1	5	2	4	4	5	4	5	11	7	4	9	5	,
-5	3	б	7	9	10	4	6	11	7	13	8	12	17	
-4	4	6	9	10	11	10	11	14	6	13	16	20	9	
— 3	10	7	3	11	9	15	10	14	9	12	1 8	17	12	
-2	11	13	8	11	4	5	9	12	12	15	12	.19	11	
—1	16	17	7	9	6	6	9	10	10	17	11	10	10	
0	10	11	10	7	10	7	11	11	10	11	8	10	9	
+1	21	17	12	10	4	10	10	5	.10	7	12	9	10	
+2	13	24	18	15	9	19	10	14	11	9	15	10	7	
+3	8	13	22	22	7	10	4	14	12	12	6	6	2	
+4	5	17	12	9	10	5	11	15	10	8	7	7	11	
+5	7	8	9	7	10	7	6	15	10	8	12	5	7	
+6	12	10	10	7	8	2	1	8	9	3	3	5	2	

r		n(r) $theor.$
0-1	0+ 2	0.1
2-3	4+ 4	0.5 + 1.6
45	9+10	3.9+7.5
6-7	9+17	12.1 + 16.7
8-9	9+16	20.3 + 21.6
10—11	28+16	21.2 + 18.5
12—13	13+ 5	15.0+11.2
14 - 15	4 + 6	7.8 + 5.0
16—17	2+6	3.0 + 1.8
18—19	2+2	0.9+ 0.5
20—21	1+1	0.2 + 0.1
\geqslant 22	3	0.05

No. 59. $a = 7^{h}44^{m}$; $B = +23^{o}$. N = 1303; $w_{1} = -$; $w_{2} = -$. $[s_{1} = -$; $s_{1} = -$; $s_{2} = 2$; $s_{2} = 14.5$]

r	n(r) obs. theor.							
	008.	tneor.						
0	1	0.1						
1	0	0.8						
2	1	2.4						
3	8	5.8						
4	9	11.2						
5	16	17.3						
6	23	22.1						
7	27	24.2						
8	20	23.7						
9	28	20.0						
10	10	15.6						
11	9	10.8						
12	7	7.1						
13	4	4.2						
14	4	2.3						
≥ 15	2	2.4						

No. $a = 7^{h}52^{m}$; $B = +24^{0}$. N = 696; $w_{1} = 20$; $w_{2} = 40$. $s_{1} = 5$; $\delta_{1} = 0.6$; $s_{2} = -$; $\delta_{2} = -$

-	<u>-6 -</u>	-5 -	<u>-4</u> -	-3 -	-2 -	-1	0	+1 -	+2 -	+ 3 -	+4 -	 5 -	 6
— 6	1	4	6	9	5	5	8	3	6	5	3	1	5
5	1	4	5	3	3	5	6	5	3	8	2	5	4
-4	4	9	6	8	8	2	3	8	3	9	4	6	5
-3	8	7	9	3	4	3	5	1	6	5	6	7	7
2	8	3	3	5	2	2	6	10	4	3	7	4	5
-1	5	9	5	6	3	1	2	3	8	4	5	3	4
0	5	6	5	6	8	6	1	2	3	6	4	6	2
+1	4	3	6	6	3	0	4	3	4	5	5	6	6
+2	3	7	7	3	3	1	0	4	2	3	3	3	3
+3	10	2	3	1	3	5	1	1	2	6	2	3	4
+4	4	4	6	6	4	2	5	4	1	2	2	4	1
+5	3	4	2	3	5	4	3	0	2	2	2	4	1
+6	6	1	1	7	1	0	3	3	3	5	2	2	1
													_

r	n(r) obs. $ theor.$								
0	4	2.8							
1	17	11.3							
2	20	23.3							
3	3 5	31.8							
4	24	33.1							
5	24	27.3							
6	22	18.7							
7	7	11.2							
8	9	5.7							
9	5	2.6							
≥ 10	2	1.7							

No. 61. $a = 8^{h}0^{m}$; $B = +26^{o}$. N = 1446; $w_{1} = 20$; $w_{2} = 13$. $s_{1} = 7$; $\delta_{1} = 3.9$; $s_{2} = 6$; $\delta_{2} = 16.5$

_	-6 -	- 5 ·	-4 -	— 3 ·	—2 -	1	0	+1	+2	+3	+4	+5	+6	$+\alpha$	r	obs.	$egin{array}{c} n(r) \ theor. \end{array}$
— 6	1	7	2	3	9	8	2	13	9	12	11	9	9	u	0		ineor.
— 5	2	13	6	6	13	13	13	11	14	24	10	6	5		1-2	0 1 ± 3	0.4+1.3
-4	7	9	7	10	9	9	8	15	14	18	12	10	8			·	3.5+7.4
3	8	8	10	6	9	5	4	9	14	10	6	7	6				12.7+17.9
-2	4	7	6	10	9	9	6	9	9	15	11	6	8		7— 8	21 + 16	22.0 + 23.2
-1	7	8	8	4	5	12	4	13	10	10	11	12	10			•	22.2 + 18.8
0	6	5	5	4	7	6	6	10	8	10	10	13	8				14.5+10.4
+1	11	12	9	8	7	4	11	10	5	7	7	9	7				6.4+4.2 2.4+1.3
+2	10	12	6	б	3	7	10	17	9	8	11	14	14		13-10 $17-18$		0.6+0.3
+3	6	6	12	9	8	9	10	14	11	7	7	6	7		≥19	1	0.3
+4	7	3	3	5	11	6	7	10	7	12	5	5	11				
+5		8	6	11	14	6	12	12	14	9	7	10	5				
+6		5	7	6	6	6	6	7	10	10	10	9	6				
 -	-δ																

No. 62. $a = 8^{\text{h}}8^{\text{m}}; B = +28^{\text{o}}. N = 960; w_1 = 12; w_2 = 340.$ $s_1 = -; \delta_1 = -; s_2 = 3; \delta_2 = 11.3$

-	-6 -	-5 ·	_4	<u>-3</u>	<u>-2</u> -	-1	0	+1 -	+2	+3	 4 -	+ 5	+6	$+\alpha$	r	obs.	theor.
6	1	9	4	9	4	3	4	7	8	3	7	4	2	•	0	2	0.7
5	3	4	8	4	3	4	4	7	4	2	7	13	2		1	3	3.3
-4	7	9	7	9	2	3	11	6	9	6	5	5	10		$\overline{2}$	10	9.3
-3	2	2	8	6	8	3	10	5	4	3	10	7	3		3	21	17.5
	4	4	0	O	0					3		•	3		4	3 0	25.0
-2	3	4	6	7	8	3	3	5	5	10	3	7	6		5	23	28.4
-1	8	9	7	10	4	6	6	2	3	5	5	5	8		6	22	26.9
										0			10		7	18	22.0
0	9	5	4	6	2	2	0	4	5	6	5	11	10		8	12	15.4
+1	1	4	4	6	5	6	4	3	5	12	5	5	6		9	12	9.8
+2	9	8	4	3	5	3	4	9	6	5	5	7	6		10	8	5.6
															11	3	2.9
+3	4	4	4	4	6	6	3	7	4	7	8	3	4		12	2	1.4
+4	4	14	5	7	10	8	9	8	6	6	6	5	0		13	2	0.6
+5	9	2	11	4	6	7	12	13	5	1	8	3	3		≥ 14	1	0.5
						5	6	5	4	7	7	4	4				
+6	10	7	3	6	9	<u>ə</u>	0	<u> </u>	4:	- 1	1	4	4				

+8

No. 63. $a = 8^{h}16^{m}$; $B = +30^{o}$. N = 1145; $w_{1} = 1400$; $w_{2} = 600$. $s_{1} = 12$; $\delta_{1} = 2.1$; $s_{2} = 6$; $\delta_{2} = 13.5$

	-6 -	_5 ·	-4	<u>-3</u>	<u>-2</u>	-1	0 -	+1	+2	+3 -	+4-	 -5	+6	یم ا
-6	6	3	3	4	5	4	8	6	9	3	6	8	3	$+^{\alpha}$
- 5	12	11	3	2	8	6	7	10	7	6	9	3	6	ĺ
-4	5	12	7	8	5	8	9	8	9	5	8	8	8	
-3	8	9	8	11	4	9	5	8	12	11	5	7	11	
2	4	9	4	6	14	7	8	7	5	7	6	8	6	
-1	7	7	11	5	2	9	7	9	7	5	6	9	5	·
0	13	<i>15</i>	12	6	6	10	9	10	5	4	4	7	6	
+1	9	9	7	12	9	10	<i>13</i>	10	5	8	7	5	6	
+2	7	11	8	10	9	5	16	10	5	. 2	6	8	1	
+3	. 3	9	5	10	4	10	12	5	12	9	9	5	2	
+4	4	3	3	4	8	4	10	4	8	6	2	7	5	
+5	3	4	4	8	6	7	4	11	4	4	2	2	3	
+6	5	6	2	5	8	8	7	10	1	3	1	3	0	
+	δ													

r		(r) theor.
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \geqslant 16 \end{array} $	1 3 8 13 17 21 18 18 22 18 11 7 7 2 1	0.3 1.4 4.4 10.3 17.0 23.1 25.9 25.2 21.3 16.1 10.9 6.7 3.8 1.9 1.0 0.5 0.5

No. 64. $a = 8^{h}24^{m}$; $B = +31^{o}$. N = 1231; $w_{1} = 2$; $w_{2} = 10$. $s_{1} = -$; $\delta_{1} = -$; $s_{2} = -$; $\delta_{2} = -$

-	-6	— 5	-4	-3	-2	1	0	+1	+2	+3	+4	+5	+6	<u>+</u> a
 6	12	6	6	7	6	4	6	7	5	2	6	4	5	, .
— 5	7	8	13	12	6	5	3	4	9	10	9	11	5	
-4	7	8	10	8	8	6	6	9	7	4	11	7	5	
 3	7	10	6	11	7	4	4	9	5	7	3	8	4	į
_2	10	10	8	5	8	5	5	3	10	10	6	6	8	
1	12	11	10	5	4	6	4	6	4	11	9	10	7	Ì
0	6	11	9	3	9	9	6	4	7	4	3	6	7	i
+1	10	6	10	9	5	5	4	5	5	5	8	4	7	
+2	8	10	12	8	7	12	1	5	7	4	7	2	10	
+3	11	8	10	10	11	5	7	4	7	7	12	9	3	
-•4	6	12	14	8	8	4	5	8	12	9	8	9	2	
+5	8	7	10	5	6	7	14	8	11	14	7	10	5	
+6	6	6	9	3	13	9	12	7	8	7	10	4	4	

r		(r) theor.
0	0	0.1
1	1	0.8
2	3	3.1
3	7	7.4
4	19	13.6
5	20	19.8
6	21	23.9
. 7	24	25.0
8	19	23.0
9	14	18.4
10	18	13.5
11	9	8.9
12	9	5.5
13	2	3.1
≫14	3	2.6
	•	

No. 65.
$$a = 8^{h}32^{m}$$
; $B = +33^{0}$. $N = 818$; $w_{1} = 60$; $w_{2} = 70$. $s_{1} = 14$; $\delta_{1} = 1.4$; $s_{2} = 13$; $\delta_{2} = 8.8$

-	-6 -	-5 -	-4 ·	-3 -	<u>-2</u> -	-1	0 -	+1	+2 -	+3 -	 4 -	 -5	+6	$+\alpha$	r	$ {\it obs.}$	(r) theor.
6	5	5	8	6	7	7	6	10	4	1	2	8	1	"		1	
5	6	2	8	5	8	8	6	5	11	8	6	3	$_2$		0	1	1.4
1	4	4	8	5	9	4	4	1	10	6	6	8	$_2$		$\frac{1}{2}$	13	6.6 15.6
-3	6	6	6	3	3	5	10	4	8	7	4	3	5		3	24	25.1
-2															4	24	30.6
ļ	6	3	4	12	4	3	3	4	4	5	5	5	3		5	30	29.8
-1	3	5	4	8	4	7	3	2	5	8	1	1	5		6	21	24.1
0	5	6	3	8	5	0	2	5	9	5	2	4	3		7	11	16.8
+1	6	2	3	3	4	6	6	5	3	7	7	4	2		8	15	9.9
+2	8	6	3	7	2	9	1	1	2	2	2	4	3		9	6	5.3
$+3^{-1}$	1	4	2	6	3	7	3	2	1	4	6	7	10		10	4	2.6
+4	1	1	8	7	3	4	4	2	5	5	5	5	5		11	1	1.2
+5	5	3	6	8	7	9	9	13	5	5	3	5	4		12	1	0.5
	$\frac{3}{2}$	3			5							3			≥13	1	0.3
+6	2	ა	4	6	Э	4	9	6	1	5	1	3	5		<u> </u>		
+	-8																

No. 66.
$$a = 8^{h}40^{m}$$
; $B = +35^{0}$. $N = 862$; $w_{1} = 120$; $w_{2} = 90$. $s_{1} = -$; $\delta_{1} = -$; $s_{2} = -$; $\delta_{2} = -6 - 5 - 4 - 3 - 2 - 1$ $0 + 1 + 2 + 3 + 4 + 5 + 6$

_	-6 	-5	<u>-4</u>	<u>-3</u>	_2 -	-1	0 -	 	+2	+3 -	 4 -	+ 5 -	 -6
-6	4	7	2	10	10	7	5	6	5	6	6	1	5
— 5	3	1	12	5	7	3	11	6	9	13	8	7	7
4	5	4	4	3	7	5	8	3	7	7	9	9	9
3	2	4	4	2	4	6	10	9	4	8	7	4	5
-2	6	2	2	4	4	7	5	4	5	10	3	7	8
-1	1	3	8	2	4	3	3	2	3	8	6	3	7
0	4	4	4	3	4	3	3	7	3	1	4	6	8
+1	2	3	7	7	3	4	5	5	4	4	2	6	6
+2	6	2	5	8	4	5	6	4	9	4	5	3	4
+3	6	12	7	7	1	7	3	4	3	2	9	3	8
+4	6	6	3	9	3	4	4	2	4	1	3	3	7
+5	5	10	2	12	6	8	4	6	1	9	5	4	4
+6	3	1	5	3	0	6	7	8	4	1	4	2	3

r		(r) $ theor.$			
0	1	1.0			
1	9	5.3			
2	14	13.3			
3	27	22.8			
4	33	28.9			
5	17	30.0			
6	18	25.4			
7	20	18.7			
8	11	11.8			
9	9	6.6			
10	5	3.4			
11	1	1.5			
12	3	0.7			
≥ 13	1	0.5			

No. 67. $a = 8^{h}48^{m}$; $B = +37^{o}$. N = 765; $w_{1} = 350$; $w_{2} = 8$. $s_{1} = 29$; $\delta_{1} = 1.6$; $s_{2} = 13$; $\delta_{2} = 8.0$

-	-6 -	<u>-5 -</u>	-4 -	<u>-3 -</u>	-2	-1	0 -	+1 -	+2	+3	+4-	+ 5 -	+6	+
-6	1	6	6	3	2	11	4	5	7	3	6	7	9	•
-5	6	8	1	7	2	4	9	8	6	11	12	7	7	
4	9	7	4	3	5	6	4	4	0	3	5	5	7	
— 3	3	4	3	3	4	4	3	2	3	7	6	5	8	
_2	5	6	4	1	8	6	3	5	6	6	8	9	4	
1	2	7	1	2	2	1	5	1	3	7	6	5	5	
0	6	7	6	2	2	4	4	1	2	2	4	6	6	
+1	6	5	3	2	2	1	1	5	7	2	6	7	9	
+2	3	1	6	5	6	4	8	2	2	5	5	2	6	
+3	4	5	5	8	2	5	3	1	4	5	6	4	3	
+4	2	7	3	6	6	1	1	6	3	6	1	8	6	
+5	3	2	3	4	6	6	3	3	7	8	3	4	6	
+6	2	4	6	3	3	3	6	7	6	1	1	0	2	
+	δ			==					••				1	

	$ \begin{array}{c} n(r) \\ obs. theo$						
r	008.	theor.					
0	2	2.0					
1	16	8 .4					
2	20	18.6					
3	27	28.0					
4	20	31.8					
5	19	29.0					
6	33	22.2					
7	16	14.3					
8	8	8.1					
9	5	4.1					
10	0	1.9					
11	2	0.8					
≥ 12	1	0.7					

№ 68. $a = 8^{h}56^{m}$; $B = +39^{0}$. N = 674; $w_{1} = 5$; $w_{2} = 12$. $s_{1} = 4$; $\delta_{1} = 0.5$; $s_{2} = -$; $\delta_{2} = -$

_	-6 -	-5 -	-4 -	-3	-2-	-1	0 -	 1 -	 -2 -	 - 3 -	 -4 -	 5 -	+6	. +α
6	2	6	4	4	5	3	3	3	6	3	5	7	2	' ~
5	6	5	4	5	12	4	3	3	5	4	7	3	3	
4	3	4	2	10	5	3	5	3	8	4	1	7	1	l
-3	4	4	2	5 .	2	7	3	6	3	5	1	5	7	
2	4	2	0	4	8	1	4	3	3	4	3	2	5	
-1	3	3	4	1	1	10	2	5	4	6	0	4	7	
0	5	6	5	7	2	2	3	2	2	2	2	1	6	
+1	4	8	5	4	3	3	0	0	1	8	5	3	5	İ
+2	4	5	2	10	2	5	4	1	5	1	4	6	3	l
+3	4	3	3	7	2	9	2	4	5	6	3	2	2	l
+4	7	7	3	5	4	6	1	1	6	4	6	3	3	l
+ 5	4	4	5	3	7	6	3	4	2	4	4	4	3	
+6	0	1	4	4	1	5	5	4	7	2	6	5	3	
+	8													ľ

	n	(r)
r		theor.
0	5	3.2
1	14	12.4
2	22	25.0
3	33	33.0
4	34	33.2
5	26	26.6
6	14	17.4
7	12	10.2
8	4	5.1
9	1	2.2
10	3	0.8
≥11	1	0.6
1		
1		

№ 69.
$$a = 9^{h}4^{m}$$
; $B = +40^{0}$. $N = 594$; $w_{1} = -$; $w_{2} = -$. $[s_{1} = 11; \delta_{1} = 0.8; s_{2} = -; \delta_{2} = -]$

r		(r) theor.
0	8	5.1
1	16	17.6
2	30	30.8
3	29	36.6
4	41	32.2
5	19	22.6
6	17	13.2
7	4	6.6
8	3	2.9
9	2	1.2
≥ 10	0	1.0

No. $a = 9^{h}12^{m}$; $B = +42^{o}$. N = 585; $w_{1} = -$; $w_{2} = 7$. $s_{1} = -$; $\delta_{1} = -$; $s_{2} = -$; $\delta_{2} = -$

_	-6 -	- 5 -	-4 -	-3 -	<u>-2 -</u>	-1	0 -	 	 2 -	-3 -	 4 -	 - 5 -	 -6	ı+
-6	4	2	3	4	5	2	5	6	4	6	7	0	9	
-5	6	3	3	3	5	6	3	2	3	6	1	3	3	
-4	8	4	3	3	1	4	3	2	2	5	4	5	1	
-3	5	3	4	5	5	5	5	5	3	1	2	3	3	
-2	2	8	2	2	2	1	3	3	3	2	8	3	4	į
-1	2	8	4	1	9	1	5	3	5	2	4	2	3	
0	3	2	6	1	3	2	3	5	4	3	3	3	3	
-1	4	7	4	5	5	1	2	2	4	2	4	4	2	
-2	0	5	4	5	2	2	3	2	5	3	4	2	4	
-3	4	6	7	0	4	2	1	3	2	4	3	4	0	
-4	5	5	8	3	3	3	3	2	5	1	4	4.	1	
-5	4	2	6	4	1	0	2	2	1	7	3	2	1	
-6	3	4	8	3	5	4	5	2	3	3	1	3	1	
+	δ													I

r	$ \begin{array}{c} n(r) \\ obs. & theor$							
	008.	theor.						
0	5	5.5						
1	17	18.2						
2	32	31.6						
3	42	37.0						
4	29	32.0						
5	24	22.1						
6	8	12.8						
7	4	6.3						
8	6	2.7						
≥9	2	1.7						

No. 71. $a = 9^{h}20^{m}$; $B = +44^{0}$. N = 784; $w_{1} = -$; $w_{2} = -$. $[s_{1} = -$; $\delta_{1} = -$; $s_{2} = 6$; $\delta_{2} = 9.0$]

r		(r) theor.
0	0	1.8
1	6	8.8
2	9	17.6
3	37	26.0
4	37	31.4
5	29	29.3
6	27	22.9
7	10	15.1
8	6	8.8
9	6	4.5
10	0	2.1
≥11	2	1.6

№ 72. $a = 9^{h}28^{m}$; $B = +46^{o}$. N = 654; $w_{1} = 40$; $w_{2} = 450$. $s_{1} = -$; $s_{1} = -$; $s_{2} = 2$; $s_{2} = 9.0$

 $+\alpha$

_	<u>-6 -</u>	- 5 -	-4 -	<u>-3</u> -	-2-	-1	0 -	 1 -	+ 2 -	+3	+4	+5-	+6
-6	0	1	5	2	4	5	3	7	5	2	5	2	2
— 5	2	3	5	7	1	6	1	3	3	4	4	3	0
-4	4	3	4	6	7	3	5	4	8	5	4	4.	2
-3	6	4	6	3	5	5	4	6	7	1	3	4	5
-2	4	5	6	3	6	3	. 1	2	3	6	11	1	6
1	7	5	7	4	3	3	6	4	3	6	6	4	3
0	2	6	7	3	3	2	4	3	2	2	3	0	4
+1	3	3	6	3	9	6	0	4	3	6	1	5	0
+2	7	4	4	1	4	1	4	3	5	7	6	10	5
+3	3	6	6	1	0	5	0	9	9	4	1	7	2
+4	3	3	3	2	6	9	4	5	3	2	2	1	2°
+5	2	4	4	4	5	4	1	6	2	3	6	5	3
+6	2	3	2	4	3	1	6	3	2	4.	2	2	1

r		(r) $theor.$
0	7	3.6
1	15	13.8
2	23	26.5
3	35	34.0
4	30	33.1
5	19	25.8
6	23	16.3
7	10	9.1
8	1	4.5
. 9	4	1.9
10	1	0.7
≥ 11	1	0.3

 $+\delta$

No. 73.
$$a = 9^{h}36^{m}$$
; $R = +48^{o}$. $N = 684$; $w_{1} = -$; $w_{2} = -$. $[s_{1} = 8; \delta_{1} = 1.2; s_{2} = -; \delta_{2} = -]$

-	-6 -	-5 -	-4 -	-3 -	<u>-2</u> -	-1	0 -	 - 1 -	+2 -	+3 -	 4 -	+5 -	 6	$+\alpha$
- 6	2	3	2	1	2	5	8	5	7	1	4	4	2	1 44
— 5	4	1	1	1	1	8	5	7	5	1	3	8	6	
-4	3	1	5	4	3	5	7	2	2	8	9	1	4	
-3	5	7	5	6	8	2	5	2	4	0	6	5	5	
-2	1	4	3	8	5	4	5	4	5	3	5	3	3	
-1	6	3	3	3	4	4	3	5	8	7	5	3	4	
0	0	6	7	4	4	4	3	2	3	6	7	12	6	
+1	4	1	3	3	3	2	5	2	5	5	2	8	8	
+2	9	6	6	3	1	3	5	2	2	4	6	4	3	
+3	7	2	4	1	4	6	5	3	4	4	5	7	5	
+4	2	3	4	3	4	2	10	4	4	0	4	3	3	
+5	4	4	6	2	4	5	6	5	3	1	5	3	2	
+6	2	3	3	3	4	2	2	6	4	4	3	2	2	
	£										-			

1	$\mid n \mid$	(r)
r		theor.
0	3	3.0
1	14	11.8
2	24	24.1
3	32	32.3
4	33	33.2
5	27	27.0
6	14	18.1
7	9	10.7
8	9	5.4
9	2	2.4
10	1	1.0
≥ 11	1	0.7

No. 74.
$$a = 9^{h}44^{m}$$
; $B = +49^{o}$. $N = 694$; $w_{1} = 4$; $w_{2} = 5$. $s_{1} = -$; $s_{2} = -$; $s_{2} = -$; $s_{2} = -$

_	-6-	- 5 -	-4 -	- 3 -	<u> </u>	-1	0 -	+1	+ 2 -	 -3 -	-4 -	 - 5 -	 6	$+\alpha$
-6	3	2	3	6	6	2	2	5	6	2	3	0	2	1 "
5	7	4	3	1	7	1	3	2	3	3	3	2	5	
-4	2	3	4	1	5	1	5	1	6	7	4	3	4	
-3	4	4	2	4	6	6	8	4	4	8	7	2	2	İ
-2	2	5	5	3	5	8	2	5	7	6	3	3	2	
1	1	3	6	3	2	6	8	4	12	4	3	4	2	
0	7	4	6	6	4	3	5	5	3	3	2	4	2	
+1	7	7	5	5	2	8	6	4	9	5	2	4	4	
+2	3	4	7	2	1	4	6	5	3	8	5	4	1	
+3	5	5	3 .	4	4	6	7	6	3	3	3	3	3	
+4	3	3	5	4	8	4	2	6	5	6	6	2	4	
+5	2	1	3	4	2	8	5	2	11	4	3	5	2	
+6	0	2	2	6	2	8	3	7	4	4	4	3	2	
- +	δ													ı

r		t(r) theor.
0	2	2.8
1	9	11.5
2	31	23.5
3	33	32. 0
4	31	33.1
5	21	27.3
6	19	18.6
7	11	11.2
8	9	5.7
9	1	2.6
10	0	1.0
≥ 11	$_2$	0.7

№ 75. $a = 9^{h}52^{m}$; $B = +51^{o}$. N = 747. —

_	-6 -	<u>-5</u>	<u>-4</u> -	<u> </u>	_2	<u>-1</u>	0 -	+1 -	+ 2 -	 3 -	 4 -	+5 -	+ 6	$+\alpha$
— 6	2	2	1	4	2	5	4	6	7	2	4	4	4	"
— 5	2	7	5	6	6	5	7	4	5	3	1	5	3	
-4	4	5	3	3	5	5	5	6	4	5	7	7	3	
-3	3	3	5	6	1	4	7	7	9	3	5	8	7	
-2	0	1	5	4	9	5	4	6	7	3	8	7	3	
1	5	5	5	6	6	4	6	8	4	6	5	2	5	
0	5	4	4	3	6	5	3	5	5	3	5	6	3	
+1	4	7	11	2	0	2	2	5	4	2	3	3	5	
+2	3	1	4	8	7	2	4	3	6	3	4	5	4	
+3	7	7	6	4	6	5	6	3	4	3	2	5	5	
+4	3	5	3	4	8	2	2	8	1	3	5	4	7	
+5	9	2	7	3	3	12	2	4	2	3	5	3	0	
+6	2	6	4	5	7	1	7	1	4	3	1	2	5	
+	-δ												·	

r		(r) theor.
0	3	2.2
1	9	9.2
2	19	20.0
3	29	29.0
4	28	32.3
5	35	28.5
6	17	21.2
7	18	13.4
8	6	7.3
9	3	3.7
10	0	1.6
11	1	0.6
\geqslant 12	1	0.4

No. 76. $\alpha = 10^{h}0^{m}$; $B = +53^{o}$. N = 325. —

_	-6 -	- 5 -	-4 -	-3 -	-2-	-1	0 -	 -1 -	 - 2 -	 - 3 -	 4 -	 +5 -	+6	$+\alpha$
6	1	1	5	5	1	6	3	3	1	2	0	2	0	1 4
5	2	1	1	2	1	1	2	2	2	3	1	2	1	
-4	2	2	1	1	2	3	1	3	1	3	3	3	2	
-3	4	4	4	1	1	0	3	2	1	2	3	2	1	
-2	0	1	1	1	2	0	1	1	3	2	3	0	1	
—1	1	3	1	0	0	2	0	1	1	0	2	0	$_2$	
0	4	1	1	3	1	2	0	1	0	1	2	3	3	
+1	0	2	1	3	2	1	2	3	1	2	1	1	1	
+2	3	3	3	2	2	2	1	5	2	4	2	2	3	
+3	3	6	1	4	0	2	2	2	2	3	1	4	1	
+4	0	1	4	2	3	3	3	1	1	5	1	2	0	
+ 5	1	2	3	4	2	2	0	1	2	2	2	2	1	
+6	0	5	2	4	2	4	6	2	1	0	4	2	1	
+	δ													

r	obs.	(r) theor.
0	20	24.5
1	52	48.2
2	4 9	46.0
3	28	29.9
4	12	14.5
5	5	5.3
$\geqslant 6$	3	2.2

№ 77.
$$\alpha = 10^{h}8^{m}$$
; $B = +55^{o}$. $N = 551$. —

	-6 -	-5 -	-4 -	-3 -	<u>-2</u> -	-1	0 -	⊢1 -	- 2 -	-3 -	-4 -	 - 5 -	 6	$+\alpha$	r	n obs	$\left. egin{array}{l} (r) \\ theor. \end{array} ight $
— 6	3	1	4	3	3	2	3	2	1	2	3	2	3		0	7	6.6
-5	2	3	3	1	0	2	4	3	1	2	3	5	3		1	21	21.0
-4	3	2	2	1	2	6	3	5	4	5	2	1	$_2$		$\frac{1}{2}$	31	34.2
- 3	4	5	1	3	7	3	3	4	5	2	4	4	1		3	43	37.6
	0	4	4	3	5	6	3	4	6	2	5	5	1		4	27	30.7
-2 -1				2											5	22	19.9
	4	3	2		3	3	5	5	4	3	5	4	2		6	10	11.0
0	5	3	1	1	7	2	3	6	1	2	4	7	2		7	6	5.0
+1	3	3	1	1	3	6	3	3	6	4	5	5	0		8	0	2.1
+2	3	5	2	6	3	1	3	5	4	2	5	3	4	Ì	9	1	0.8
+3	6	1	4	0	3	4	7	1	5	3	3	6	1		≥ 10	1	0.6
+4	2	2	1	3	7	2	5	5	3	4	3	5	0				
+5	2	1	4	1	2	4	2	9	3	2	7	6	4				
+6	4	0	10	2	4	4	4	5	3	3	2	0	3				
+	$-\delta$													•	J.	· · · · · · · ·	

No 78. $a = 10^{h}16^{m}$; $B = +57^{o}$. N = 465.

-	-6 -	- 5 -	-4 -	-3 -	-2 -	-1	0 -	 -1 -	 - 2 -	 - 3 -	-4 -	 - 5 -	 - 6	$+\alpha$	ı	$m{r}$	obs.	(r) theor.
— 6	1	4	6	4	3	4	1	2	7	2	3	2	2	" ~	ŀ			-
5	4	5	4	7	4	2	3	7	2	2	3	3	1		ı	0	11	11.0
															1	1	33	29.9
-4	3	3	5	4	3	2	3	4	2	3	1	2	2			2	34	4 0.8
3	4	4	6	3	1	1	1	4	2	3	6	3	1		1	3	35	37.4
2	4	4	1	1	0	4	3	1	2	5	2	2	3			4	3 6	25.6
-1	4	2	2	3	5	3	0	2	3	3	4	4	3		1	5	10	14.5
0	6	f 2	3	4	5	1	2	1	4	1	1		2		ı	6	6	6.6
	0	ک		4	3							1	4			7	3	2.5
+1	4	1	3	4	1	0	0	4	0	4	4	2	1			≥8	1	1.3
+2	3	4	3	2	3	4	4	2	3	1	3	0	1					
+3	5	1	1	2	2	4	2	3	3	3	4	1	6					
+4	4	5	4	1	3	5	4	1	0	3	1	2	2					:
+5	4	4	6	3	3	4	4	0	3	1	1	1	2					
+6	1	2	8	1	0	2	0	5	1	5	2	0	2					
+	-δ													•	•			

No. 79. $a = 10^{h}24^{m}$; $B = +58^{o}$. N = 344; $w_{1} = 20$; $w_{2} = 8$. $s_{1} = 57$; $\delta_{1} = 0.9$; $s_{2} = -$; $\delta_{2} = -$

	-6 -	-5 -	-4 -	<u>—3</u> -	<u>-2</u> -	-1	0 -	 1-	 - 2 -	+3 -	⊹4 -	+ 5 -	 -6	
-6	1	1	5	1	5	2	1	0	3	0	2	1	3	•
5	2	1	3	1	2	1	1	3	2	1	4	4	1	
-4	1	2	1	1	2	4	1	1	3	2	3	4	2	
-3	2	1	1	2	1	3	5	1	3	5	0	2	5	
-2	4	1	1	1	2	3	2	4	2	2	3	3	3	
-1	1	1	1	2	4	4	1	2	1	3	6	4	2	
0	1	4	3	3	2	2	2	2	1	0	3	4	1	
+1	1	1	4	3	4	2	2	3	4	1	1	1	3	
+2	0	1	2	3	1	1	1	2	5	1	0	1	3	
+3	2	5	1	2	0	1	1	2	3	0	2	2	1	
+4	1	2	5	1	4	1	5	4	1	5	2	2	3	
+5	0	0	1	1	1	1	4	2	1	2	2	1	0	
+6	1	1	3	0	0	2	3	3	0	1	3	1	1	
+	δ												·············	ı

r	n	(r) $ theor.$				
0	14	21.8				
1	61	45.6				
2	39	46.2				
3	27	31. 0·				
4	17	15.6				
5	10	6.2				
$\geqslant 6$	1	3.1				

No. 80. $a = 10^{h}32^{m}$; $B = +60^{o}$. N = 446.

-	-6 -	-5 -	-4 -	-3 -	-2 -	-1	0 -	 	 2 -	 - 3 -	 -4 -	 - 5 -	 - 6	$+\alpha$
-6	1	4	3	1	2	4	5	3	5	3	3	3	2	"
— 5	4	3	5	2	3	1	2	4	2	2	6	2	2	
4	4	1	1	1	1	3	1	5	3	4	1	5	5	
— 3	3	6	3	3	3	1	5	2	3	4	4	2	5	
_2	3	3	2	1	4	1	4	2	4	3	3	2	3	į
—1	4	2	2	3	2	2	1	4	1	2	3	1	2	İ
0	5	3	3	3	2	4	1	1	2	2	1	2	$_2$	
+1	2	5	6	5	5	3	3	1	2	2	4	4	6	
+2	1	3	0	1	3	3	3	1	0	2	3	1	1	
+3	2	1	2	4	3	0	4	7	1	1	1	1	1	
+4	3	5	3	3	2	6	5	4	1	1	3	3	0	
+5	1	2	7	0	2	0	3	4	0	3	3	4	6	
+6	3	1	3	1	2	2	2	1	1	1	2	4	0	
+	δ													•

r		n(r) theor.				
0	8	12.3				
1	38	32.0				
2	37	41.8				
3	42	37.0				
4	22	24.3				
5	14	13.1				
6	6	5.8				
≫ 7	2	2.8				

No. 81.
$$a = 10^{\rm h}40^{\rm m}$$
; $B = +62^{\rm o}$. $N = 509$; $w_1 = 21$; $w_2 = 7$. $s_1 = 8$; $\delta_1 = 0.9$; $s_2 = -$; $\delta_2 = -$

-	-6 -	<u>-5 -</u>	-4 -	-3 -	_2 -	-1	0 -	 1 -	 2 -	 3 -	 4 -	 - 5 -	 6	. + .
6	4	2	3	4	8	5	0	7	2	5	5	1	1	—
-5	2	2	5	4	2	3	7	3	7	5	4	1	5	
-4	5	8	3	2	3	2	3	0	1	3	4	5	1	
 3	1	6	4	3	6	0	1	3	5	3	2	3	2	
-2	3	4	4	3	3	3	0	1	1	3	2	2	3	
-1	3	4	3	2	4	3	5	3	3	4	5	2	1	
0	5	1	0	0	2	3	1	3	1	4	2	1	5	
+1	2	5	3	4	1	2	5	6	1	5	6	7	4	
+2	1	2	1	3	1	5	2	1	2	2	3	5	3	
+3	3	2	2	1	4	4	1	3	2	8	3	0	2	
+4	3	0	1	1	3	2	3	1	4	4	0	6	4	
+5	3	5	5	2	1	6	2	2	1	3	2	3	2	
+6	3	1	2	1	5	0	4	5	5	8	4	4	2	
+	$\cdot \delta$			-										ı

r		(r) theor.		
0	10	8.2		
1	29	24. 9		
2	33	37.2		
3	38	38.1		
4	22	28.7		
5	23	17.5		
6	6	8.9		
7	4	3. 8		
≥8	4	2.2		

No. 82. $a = 10^{h}48^{m}$; $B = +64^{o}$. N = 377. —

-	-6-	-5 -	-4 -	-3-	_2 -	-1	0 -	+1 -	+2 -	+3 -	+4 -	 - 5 -	+ 6
6	2	1	1	2	2	1	4	2	3	2	4	1	4
— 5	1	5	4	3	3	3	2	2	3	2	2	4	2
-4	4	1	4	3	2	2	3	1	2	1	6	3	3
—3	1	1	3	4	5	3	4	2	5	4	1	2	4
-2	2	2	1	5 .	2	3	4	2	3	3	3	1	0
-1	2	1	3	1	2	1	2	3	1	2	1	5	2
0	1	2	2	4	1	1	0	2	2	2	2	3	3
+1	2	2	2	2	0	2	3	0	1	2	3	0	3
+2	2	0	2	0	2	0	4	1	1	1	2	2	3
+3	0	1	3	0	2	2	1	3	6	2	3	2	4
+4	3	4	2	1	3	5	2	1	1	3	0	4	1
+5	2	1	2	1	3	1	4	2	4	2	1	2	2
+6	2	1	1	1	3	1	1	4	3	2	1	4	4

۵,	n	(r)
r	obs.	theor.
0	11	18.0
1	41	40.6
2	55	4 5.6
3	32	34. 0
4	22	19.0
5	6	8.3
≥6	2	4.7
	/(8)	

No. 83. $\alpha = 10^{\rm h}56^{\rm m}; \ B = +66^{\rm o}. \ N = 435; \ w_1 = -; \ w_2 = -.$ $[s_1 = -; \ \delta_1 = -; \ s_2 = 2; \ \delta_2 = 6.5]$

-	-6 -	-5 -	-4 -	-3 -	-2 -	-1	0 -	+1 -	+2 -	+3 -	+4 -	+5 -	+6
6	1	7	4	1	5	1	3	4	4	4	2	3	2
— 5	1	2	2	3	1	2	3	3	3	3	2	1	3
4	5	3	2	3	4	4	1	4	4	1	1	2	1
-3	2	4	1	0	5	0	3	1	5	1	3	2	5
-2	1	0	1	1	2	1	1	0	3	2	4	2 ,	4
-1	5	2	4	3	2	4	2	3	1	2	2	2	2
0	5	3	5	2	2	1	2	2	3	4	2	2	0
+1	0	3	4	0	1	3	1	1	3	3	4	4	2
+2	2	5	4	5	2	2	3	1	3	0	2	3	4
+3	4	4	5	1	3	2	2	1	2	1	4	1	2
+4	4	3	3	4	3	2	0	3	5	3	3	0	1
+5	2	3	4	7	6	3	3	1	3	0	2	2	2
+6	4	6	4	3	2	3	4	7	2	1	0	1	3
+	δ					.,							

r		(r) theor.			
0	12	13.0			
1	32	33. 0			
2	42	42.6			
3	38	36.8			
4	28	23.5			
5	12	12.6			
6	2	5.4			
≽ 7	3	3.1			

No. 84. $a = 11^{h}4^{m}$; $B = +67^{o}$. N = 388. —

_	-6 -	-5 -	-4 -	-3 -	-2-	-1	0+1+2+3+4+5+6							$+\alpha$
6	3	1	1	3	2	1	0	2	3	4	4	1	1	1 6
— 5	2	4	1	3	6	6	4	5	1	3	3	0	1	
-4	2	3	0	3	4	1	4	1	2	1	1	3	2	
— 3	0	2	3	3	3	4	3	2	3	1	1	1	2	
2	4	3	0	2	3	1	1	2	2	2	1	3	1	
1	2	3	2	2	1	0	2	0	0	3	1	4	4	
0	2	0	7	2	2	1	3	1	0	1	6	3	1	
+1	3	1	2	2	2	2	0	1	5	2	1	5	1	
+2	2	3	3	1	5	1	2	1	4	2	3	3	1	
+3	1	1	2	2	2	1	2	1	3	3	1	$\dot{2}$	3	
+4	1	1	4	2	3	4	5	3	3	1	8	3	4	
+5	4	3	5	3	2	4	4	4	3	3	3	2	2	
+6	1	1	4	3	1	2	2	1	0	3	2	2	2	
+	-δ													ı

	n	(r)
r	oos.	theor.
0	12	16.9
1	45	39.5
2	42	45.3
3	4 0	34.4
. 4	19	19.6
5	6	8.8
6	3	3.4
7	1	1.2
≥8	1	0.5

 $+\delta$

No. 85.
$$\alpha = 11^{h}12^{m}$$
; $B = +69^{o}$. $N = 307$. —

-6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6

-6 0 1 0 2 0 2 3 2 5 2 2 1 2

-5 0 1 1 0 3 1 1 1 2 4 1 1 5

-4 3 2 1 1 1 4 4 4 1 1 3 4 1

-3 1 2 5 0 2 1 1 3 1 0 2 3 5

-2 1 1 1 1 2 2 1 1 0 2 1 2 4 0

-1 2 3 0 1 2 2 1 3 3 1 2 0 0

0 2 1 4 1 4 2 1 1 3 2 2 3 2

+1 3 2 1 1 1 1 2 1 1 2 0 6 1

+2 2 0 2 4 3 0 1 2 1 1 4 2 0

+3 2 3 1 2 4 0 1 3 1 4 2 1 0

+4 2 2 1 2 3 2 1 2 4 1 4 0 0

+5 0 2 1 6 1 4 2 1 2 0 1 1 1

+6 2 3 1 1 5 0 2 2 4 2 5 1 1

No. 86. $a = 11^{h}20^{m}$; $B = +71^{o}$. N = 392; $w_1 = 8$; $w_2 = 19$. $s_1 = 20$; $\delta_1 = 0.55$; $s_2 = 2$; $\delta_2 = 7.0$

-	<u>-6 -</u>	- 5 -	<u>-4</u> -	- 3 -	<u>-2</u> -	-1	0 -	 1 -	 - 2 -	 -3 -	-4 -	 - 5 -	+6	$+\alpha$
6	1	4	0	2	1	1	2	3	1	1	1	4	1	"
5	1	7	3	3	2	2	4	3	5	2	2	1	3	
-4	7	1	6	3	1	4	2	6	3	2	4	4	1.	
-3	4	3	0	1	2	5	3	2	3	2	4	7	2	
-2	3	0	5	2	2	4	0	1	3	3	4	7	0	
-1	0	0	3	1	1	3	2	1	3	3	3	1	1	
0	2	1	1	2	3	4	4	1	0	4	1.	2	2	
+1	6	2	3	2	5	2	2	1	0	2	1	1	5	
+2	1	0	2	2	4	3	2	0	2	4	4	0	3	
+3	0	0	1	3	2	3	3	4	2	2	3	3	1	
+4	3	1	2	2	1	2	1	1	2^{\cdot}	5	3	2	0	
+5	1	2	2	1	4	4	4	3	2	0	2	3	1	
+6	1	1	0	0	2	1	5	1	6	4	4	2	0	·
														-

r	n	(r)
	obs.	theor.
0	19	16.2
1	4 0	38.6
2	4 2	45.0
3	31	35. 0
4	22	20.3
5	7	9.3
6	4	3. 5
≥ 7	4	1.7
		I

No. 87. $a = 11^{h}28^{m}$; $B = +73^{0}$. N = 299; $w_{1} = -$; $w_{2} = -$. $[s_{1} = -$; $\delta_{1} = -$; $s_{2} = 2$; $\delta_{2} = 7.0$]

-	<u>-6 -</u>	<u>-5</u> -	<u>-4 -</u>	- 3 -	-2 -	1	0	+1 -	+2 -	+3 -	+4-	+ 5 -	+6
-6	1	1	1	4	1	1	2	3	0	0	0	2	1
- 5	2	2	2	1	3	4	2	6	1	1	1	1	1 •
4	2	1	1	1	1	1	3	4	1	2	4	1	2
-3	7	1	3	3	1	4	2	2	3	2	2	1	3
-2	7	1	2	4	1	4	0	0	2	3	1	1	1
-1	1	1	4	1	1	3	0	1	4	1	1	6	4
0	2	2	2	2	0	0	3	3	2	1	3	0	2
- 1	1	3	3	1	1	2	3	2	0	0	0	1	1
+2	0	1	2	1	1	1	0	2	0	2	3	1	2
+3	2	2	3	1	1	1	1	1	0	3	1	2	1
 1	1	1	3	0	6	6	0	3	2	1	0	1	3
÷ 5	3	2	3	1	2	2	0	2	1	1	2	1	1
 -6	1	2	1	1	2	0	2	2	4	2	2	0	0
ا ^{۳-۷} +									T			-	

r		$(r) \ \ th\ eor.$
0	23	27.6
1	64	50.2
2	42	45.6
3	23	27.4
4	11	12.3
5	0	4.6
6	4	1.5
≽ 7	2	0.5

No. 88. $a = 11^{h}36^{m}$; $B = +74^{o}$. N = 461. —

 $+\alpha$

_	-6 -	-5 -	-4-	<u>-3</u>	- 2 -	-1	0 -	+1 -	+2	+3-	+ 4 ·	 5-	+6
6	1	4	5	2	1	2	2	3	3	7	0	4	2
5	1	5	7	3	3	5	2	3	1	1	2	2	1
4	1	2	3	3	1	2	3	1	4	3	1	5	3
-3	1	2	5	2	2	5	5	5	5	4	1	2	1
-2	2	1	2	3	4	5	3	4	2	3	1	2	4
1	6	4	5	1	2	4	1	5	1	4	4	0	2
0	0	4	3	3	2	1	0	2	0	0	4	0	4
+1	3	3	2	3	4	2	2	3	1	1	3	2	3
+2	3	3	2	8	1	3	2	2	2	0	2	8	0
+3	2	3	4	2	3	1	2	2	3	2	5	3	2
+4	1	5	2	3	2	2	3	3	0	3	7	4	5
+5	2	2	7	2	1	0	3	4	4	3	5	3	2
+6	0	0	6	5	2	1	2	4	4	5	5	3	2

r		(r) theor.
0	13	11.1
1	26	30.1
2	4 6	40.9
3	36	37.4
4	21	25.5
5	19	14.1
6	2	6.5
7	4	2.4
≥8	2	1.2

№ 89.
$$a = 11^{h}44^{m}$$
; $B = +76^{o}$. $N = 719$; $w_{1} = 15$; $w_{2} = 7$. $[s_{1} = -; \delta_{1} = -; s_{2} = 2; \delta_{2} = 11.5]$

r	$n(r) \ obs. \mid theor$							
0	3	2.5						
1	12	10.4						
2	22	21.8						
3	28	30.6						
4	30	32.8						
5	33	28.0						
6	18	19.7						
7	12	12.2						
8	5	6.4						
9	1	3.1						
10	3	1.3						
≥ 11	2	0.5						

No. $a = 11^{h}52^{m}$; $B = +77^{0}$. N = 428; $w_{1} = -$; $w_{2} = -$. $[s_{1} = 12$; $\delta_{1} = 0.9$; $s_{2} = -$; $\delta_{2} = -$]

_	-6-	-5 -	- 4 -	- 3 -	<u>-2 -</u>	-1	0 -	- 1 -	 -2 -	- 3 -	-4 -	 - 5 -	 -6	$+\alpha$
-6	2	2	5	4	2	3	1	5	1	1	2	1	1	'
5	5	1	4	5	3	7	2	1	2	3	5	2	3	
-4	3	5	4	1	2	5	2	2	1	3	3	2	3	
-3	3	5	2	4	6	2	4	1	0	1	1	1	3	
-2	2	2	4	2	4	0	2	1	1	2	0	1	2	
-1	5	2	1	4	3	1	2	3	1	1	4	5	1	
0	4	4	0	3	4	5	2	2	2	3	2	2	1	İ
+1	7	2	3	4	1	2	3	4	1	3	2	2	1	
+2	5	O	2	1	5	4	2	0	2	1	4	3	2	
+3	2	2	1	3	2	2	3	2	4	4	4	1	4	
+4	4	4	0	3	3	2	2	4	0	2	1	3	1	
+5	2	0	2	4	4	2	1	2	5	5	1	1	2	
+6	1	0	4	4	2	3	3	5	4	4	3	2	1	
														•

r		$(r) \ \ theor.$
0	10	13.6
1	36	34.1
2	49	43. 0
3	26	36.4
4	29	23.0
5	16	11.4
6	1	4.8
≫ 7	2	2.4

91. $a = 12^{h0m}$; $B = +79^{o}$. N = 420; $w_1 = 8$; $w_2 = 200$. $s_1 = 18$; $\delta_1 = 0.8$; $s_2 = 2$; $\delta_2 = 7.0$

-	<u>-6 -</u>	- 5 -	<u>-4</u> -	- 3-	<u>-2</u> -	_1	0 -	 1 -	 - 2 -	 - 3 -	 4 -	 - 5 -	+6	.
6	1	3	7	4	0	4	2	1	1	4	4	1	1	
-5	3	3	1	3	2	2	2	2	2	5	1	1	0	
-4	3	3	3	3	2	0	3	3	1	1	1	3	0	
-3	3	7	3	1	3	3	1	1	1	4	3	2	$_2$	
2	0	1	5	0	7	7	1	2	2	4	2	2	5	
-1	4	3	3	0	3	1	0	7	2	2	1	3	3	
0	3	0	2	5	1	0	3	4	3	2	0	2	3	
+1	4	3	3	3	1	3	1	3	2	5	3	1	1	
+2	2	1	5	4	2	0	2	1	3	4	5	0	2	İ
+3	4	2	3	1	7	1	2	1	5	7	4	1	3	
+4	3	4	6	2	2	3	3	2	2	2	1	7	0	
+ 5	1	3	5	1	3	3	3	2	1	2	5	2	6	
+6	3	0	1	3	0	3	2	1	0	5	2	2	1	
+	- δ		-					-						ı

r		(r) theor.
0	17	14.4
1	37	35.0
2	36	43.6
3	44	36.0
4	14	22.3
5	11	11.1
6	2	4.5
\geqslant 7	8	2.3
	·	

No. 92. $a = 12^{h}8^{m}$; $B = +81^{o}$. N = 403.

_	-6 -	-5 -	-4 -	<u>-3 -</u>	- 2-	-1	0 -	 -1 -	+2 -	 -3 -	 4 -	 - 5 -	 -6	$+\alpha$
6	1	1	3	0	3	2	0	3	6	1	2	4	2	"
— 5	0	2	2	4.	4	1	1	1	0	3	3	5	1	
-4	2	0	6	1	3	2	0	4	2	4	3	2	5	
- 3	1	2	1	2	2	2	2	2	2	3	2	5	5	
— 2	2	4	2	4	3	1	2	6	1	2	5	2	3	
1	4	5	5	1	6	3	4	2	3	1	3	2	2	
0	2	5	1	2	6	1	4	2	2	1	3	2	4	
+1	4	1	1	1	2	2	3	2	2	1	2	3	3	
+2	0	1	2	2	2	5	2	2	2	3	2	5	2	
+3	1	3	4	1	2	2	2	0	3	3	1	3	1	
+4	3	1	1	1	3	3	3	3	0	2	4	0	2	
+5	3	6	3	3	3	2	1	2	2	3	4	5	2	
+6	1	1	1	1	2	3	1	0	3	3	3	1	2	
+	δ													

r	obs.	(r) $theor.$
0	11	15.2
1	36	37.2
2	54	44.6
3	36	35.4
4	15	21.1
5	11	10.1
≥6	6	5.9

93.
$$a = 12^{h}16^{m}$$
; $B = +82^{0}$. $N = 430$; $w_{1} = 6$; $w_{2} = 50$. $s_{1} = 19$; $\delta_{1} = 0.5$; $s_{2} = 18$; $\delta_{2} = 5.4$

	-6 -	-5 -	-4 -	-3 -	-2-	-1	0 -	+1-	+2 -	+3 -	 4 -	<u> -</u> 5 -	 -6	$+\alpha$	ı	r
6	3	1	0	0	2	2	1	0	3	2	4	4	2	" "	-	
— 5	3	0	1	1	2	3	3	2	5	2	4	4	1			0 1
-4	3	4	4	2	0	0	4	1	0	2	4	4	2		ı	2
-3	1	1	2	0	2	3	4	2	3	4	1	1	2			3
-2	2	2	3	3	4	3	2	3	3	5	2	0	6		ı	4
1	1	2	1	2	1	2	0	4	4	6	5	3	5	! 	ı	5
0	1	3	1	3	0	1	0	2	3	7	4	2	7		ı	6
÷1	2	4	2	5	1	3	2	6	4	2	4	4	5		١	7
	6]	5	1	2	0	0	2	4	2	3	7	$\frac{3}{2}$			≥8
+2																
-3	3	1	0	1	5	5	1	3	1	2	7	5	8		ı	
+4	0	2	3	2	4	1	4	4	1	4	1	1	0	į	ı	
+5	1	2	4	4	7	3	4	3	2	2	3	1	1		ı	
+6	3	2	4	3	0	2	0	2	1	1	4	1	3		١	
+	-δ													E .	==	

r	n	(r)
	obs.	theor.
0	19	13.4
1	33	34. 0
2	4 0	43.0
3	28	36.4
4	29	23.0
5	10	11.7
6	4	4.9
7	5	1.8
≥8	1	0.9

No. 94.
$$a = 12^{h}24^{m}$$
; $B = +84^{0}$. $N = 525$; $w_{1} = 10$; $w_{2} = 1.7$. $s_{1} = -$; $s_{1} = -$; $s_{2} = -$; $s_{2} = -$

_	-6 -	-5 -	-4 -	-3 -	2 -	-1	0	 	 2 -	- 3 -	 -4 -	 - 5 -	 - 6	$+\alpha$
6	4	2	4	1	2	0	1	3	2	2	4	1	5	"
— 5	5	2	4	2	1	5	1	4	2	2	3	3	3	
-4	4	3	4	3	3	5	3	0	0	3	3	2	1	
-3	2	3	3	4	1	0	5	5	5	1	3	1	2	
2	1	6	2	4	4	1	4	3	1	4	4	4	4	
-1	5	7	0	4	1	2	3	4	2	7	4	5	4	
0	1	4	2	1	1	4	1	4	2	1	3	5	2	
+1	5	5	6	2	2	3	3	3	5	4	2	3	0	
+2	5	3	2	2	4	1	0	3	4	7	3	7	4	
+3	5	9	0	6	3	3	4	1	7	3	1	2	1	
+4	2	0	5	5	5	3	3	3	4	4	5	2	0	
+5	5	2	6	4	3	5	1	4	5	2	4	3	4	
+6	4	5	6	2	3	3	3	4	1	4	1	2	7	

r		(r) theor.
0	10	7.6
1	25	2 3 .5
2	29	36.4
3	34	38.0
4	3 6	29.5
5	23	18.1
6	5	9.5
7	6	4.3
8	0	1.3
≥9	1	0.7
	•	
·		

No. 95. $\alpha = 12^{h}32^{m}$; $B = +86^{0}$. N = 648; $w_{1} = 2$; $w_{2} = 30$. $s_{1} = -$; $s_{1} = -$; $s_{2} = 4$; $s_{2} = 8.5$

-	-6 -	-5 ·	-4 -	-3 -	-2 -	-1	0 -	 1 -	+ 2 -	 -3 -	 4 -	 - 5 -	+6	_L~
-6	2	5	2	3	2	2	3	4	2	2	0	3	0	$+^{\alpha}$
5	4	3	4	5	4	5	6	5	4	3	1	6	4	l
-4	2	3	5	2	5	4	6	2	8	1	3	6	1	İ
-3	3	5	10	4	7	1	6	3	2	3	4	2	6	
2	6	5	5	2	5	7	3	4	4	7	- 5	5	7	
-1	7	6	2	5	5	7	11	9	3	6	2	3	1	
0	8	6	7	8	4	1	4	1	2	9	4	4	5	
+1	3	1	2	3	4	4	4	4	6	4	3	4	3	į
+2	7	4	4	3	3	4	1	4	3	2	4	9	4	
+3	3	1	8	7	5	4	5	3	3	2	2	1	4	
+4	1	3	4	2	5	7	1	3	ō	6	5	3	1	
+5	3	1	2	4	1	4	1	2	3	4	2	3	3	
+6	2	4	4	3	4	4	2	3	2	2	8	3	0	
+	δ												احسي	I

l r		(r)
	obs.	theor.
0	3	3.8
1	17	14.2
2	27	27.2
3	33	34.4
4	37	33.0
5	20	25.5
6	12	15.9
7	10	8.8
8	5	4.3
9	3	1.8
10	1	0.7
≥11	1	0.5

№ 96. $a = 12^{h}40^{m}$; $B = +87^{o}$. N = 691. —

-	-6 -	5	-4 -	-3 -	_2 -	-1	0 -	+1 -	 2 -	 -3 -	+4 -	 - 5 -	 -6	$+\alpha$
6	3	1	1	2	3	3	4	2	3	7	3	0	2	,
- 5	6	4	4	4	5	5	4	6	4	3	5	3	3	
-4	7	2	10	5	6	3	2	10	6	5	5	3	6	
-3	5	4	5	3	6	5	5	6	4	3	8	3	7	
— 2	8	6	3	7	3	1	4	7	2	8	3	6	3	
-1	3	5	6	5	5	6	3	4	3	4	4	2	3	
0	6	6	6	6	2	4	1	2	4	0	3	1	4	
+1	2	5	3	5	5	4	4	6	4	5	4	5	3 [.]	
+2	8	5	9	1	3	2	5	4	8	4	4	4	5	
+3	1	6	7	4	4	7	3	3	7	6	4	2	4	
+4	5	2	3	1	6	3	5	2	4	4	6	2	0	
+5	2	4	7	3	3	6	3	3	4	3	1	4	4	
+6	2	3	0	7	2	3	6	3	4	3	1	6	3	

r		(r)
	obs.	theor.
0	4	2.9
1	10	11.6
.2	18	23.7
3	3 9	32.1
4	34	33,1
5	23	27.3
6	23	18.5
7	10	11.0
.8	5	5.6
9	1	2.5
≥ 10	2	1.6

			Nº	98		a =	= 12	^h 56	, m ;	<i>B</i> =	= +	- 88	5 ⁰ .	N =	323. –	_	
-	-6 -	-5 -	<u>-4</u> -	-3 -	_2 -	-1	0 -	⊢1 -	+2 -	+3 -	⊦4 -	+ 5 -	+6	$+\alpha$	r	$\begin{array}{c c} n \\ obs. \end{array}$	(r) theor.
-6	1	2	2	1	1	0	1	0	3	2	2	3	0	·	0	22	24.5
— 5	0	2	1	2	2	2	3	1	2	5	2	2	2		1	49	48.4
-4	6	2	3	2	2	1	1	1	1	1	3	0	0		2	50	46. 0
-3	2	4	2	2	3	3	3	4	2	0	1	1	3		3	27	29.3
-2 -1	2	2	1	2	0	2	4	4	1	2	3	5	1		4	14	14.3
1	1	3	5	2	1	0	2	4	2	0	2	1	2		5	5	5.2
0	2	2	1	0	1	1	1	2	2	3	2	1	1		\geqslant 6	2	3.0
+1	1	4	1	1	1	2	3	1	2	1.	5	2	0				
+2	1	3	1	0	2	2	0	2	3	3	0	1	2				
+3	0	1	1	2	1	5	0	1	2	3	3	2	3				
+4	0	4	3	4	1	4	6	0	2	4	1	0	2				
+5	1	3	4	1	2	3	4	0	3	1	2	1	4				
+6	1	2	4	1	3	0	3	1	1	3	2	1	3				
+	8													_			

No. 99. $a = 13^{h}4^{m}$; $B = 84^{o}$. N = 214.

-	-6 -	-5 -	-4 -	-3-	<u>-2 -</u>	-1	0 -	 1 -	 - 2 -	 -3 -	 4 -	 -5 -	+ 6	+
6	2	3	1	3	5	1	0	0	2	1	1	0	0	'
— 5	2	1	0	3	0	0	1	0	0	2	1	2	1	
-4	0	0	1	1	1	1	1	2	0	1	3	4	1	
-3	1	2	4	3	1	0	1	0	0	0	2	4	1	
-2	4	1	0	1	1	4	0	2	2	0	3	2	0	
-1	1	2	3	1	1	3	2	1	0	1	1	0	0	
0	1	1	0	1	0	1	2	1	2	0	1	3	0	
+1	0	0	2	2	0	2	1	1	0	1	1	1	1	
+2	0	2	1	0	3	0	1	3	1	0	2	1	1	
+3	1	2	3	1	3	4	0	3	0	1	1	3	0	
+4	0	2	1	0	1	2	1	0	0	0	1	2	0	
+5	0	3	2	0	0	1	3	1	2	2	2	2	2	
+ 6	0	3	2	2	1	0	2	0	2	1	2	1	0	1
+	-δ													

r	obs.	(r) theor.
0	51	46.0
1	57	60.6
2	35	38.4
3	18	16.8
4	7	5.2
$\geqslant 5$	1	1.7
•		
l l		

.№ 100. $a = 13^{h}12^{m}$; $B = +83^{o}$. N = 429. —

	-6 -	-5 -	-4 -	<u>-3 -</u>	_2 -	-1	0 -	 1 -	 2-	 -3 -	 4 -	 5 -	+6	$_{\bullet} + \alpha$
6	1	4	3	2	1	1	5	4	4	3	2	3	3	"
— 5	2	1	4	4	2	5	2	6	2	4	2	3	4	
4	6	3	5	3	2	6	5	5	5	4	6	4	4	
-3	6	1	0	1	3	1	3	2	1	1	3	2	1	
_2	3	1	0	2	2	3	2	0	5	2	3	. 2	1	
-1	0	3	2	2	1	5	3	3	2	6	3	2	2	
.0	4	0	2	1	1	2	3	0	0	2	4	2	4	
+1	3	3	2	2	2	3	2	2	1	3	2	3	5	
-+2	0	2	3	2	.1	1	3	0	2	4	2	3	4	
+3	6	1	1	5	3	2	4	1	3	3	1	3	1	
+4	3	3	3	2	1	3	4	1	2	1	2	1	2	
+5	2	4	2	1	2	2	.3	2	0	1	2	3	3	
+6	2	2	3	4	2	6	3	1	2	2	1	5	3	
+	δ													ı

r	obs.	(r) theor.
0	10	13.2
1	30	33.5
2	51	42.8
3	41	36.6
4	19	23.3
5	10	12.0
$\geqslant 6$	8	7.4

No. 101.
$$a = 13^{h}20^{m}$$
; $B = +81^{o}$. $N = 389$; $w_{1} = 11$; $w_{2} = 20$. $s_{1} = 25$; $\delta_{1} = 0.64$; $s_{2} = -$; $\delta_{2} = -$

-	-6 -	-5 -	-4 -	-3-	-2 -	~1	0 –	- 1 -	 2 -	⊦3 –	 -4	 - 5 -	 -6	_L ~
- 6	1	1	0	1	1	3	2	0	0	1	4	0	0	$+\alpha$
— 5	2	4	3	2	2	2	5	3	2	1	3	1	0	
-4	3	2	2	3	2	6	0	1	2	1	2	1	0	
-3	1	6	2	3	3	1	3	0	3	3	1	4	1	
-2	1	2	2	2	1	2	3	3	1	4	3	2	3	
-1	3	3	2	4	6	0	3	4	0	4	0	1	3	
0	5	4	2	3	2	2	1	2	4	5	9	1	3	
+1	2	4	4	2	7	5	2	5	4	0	2	2	4	
+2	3	1	3	2	2	2	7	3	7	2	1	3	3	
+3	5	2	2	1	2	3	5	4	2	1	2	6	1	
+4	1	0	3	2	6	3	3	1	1	0	3	2	1	
+ 5	1	4	1	4	0	1	1	0	1	3	4	2	0	
+6	3	2	1	1	1	0	3	1	0	1	1	3	1	Ì
+	δ													J

r		(r) theor.				
0	20	16.6				
1	41	38.8				
2	4 0	45.2				
3	35	34.8				
4	17	20.0				
5	7	9.1				
6	5	3.5				
7	3	1.2				
≥8	1	0.6				

№ 102. $a = 13^{h}28^{m}$; $B = +79^{o}$. N = 353.

-	-6-	-5 -	-4 -	- 3 -	<u>-</u> 2 -	-1	0 -	 1 -	 2 -	-3 -	 4 -	 - 5 -	 6	$+\alpha$
6	0	1	1	1	2	5	2	2	0	2	3	1	3	' ~
— 5	2	0	1	2	3	5	3	2	2	5	1	3	3	
-4	0	1	1	5	1	4	3	3	4	1	5	0	4	
-3	3	1	1	3	1	0	2	3	3	4	2	1	1	
-2	4	1	2	1	2	2	2	1	1	1	0	0	1	
<u> </u>	4	3	3	0	2	2	0	1	1	0	1	5	6	
0	1	2	4	0	1	2	2	1	3	0	3	3	1	
+1	2	2	2	1	2	1	3	4	1	7	1	3	3	
+2	1	1	1	3	2	2	2	2	0	3	1	4	3	
+3	4	1	2	3	1	1	2	1	2	3	3	3	3	
+4	5	1	2	2	4	2	1	3	3	3	1	1	4	
+5	1	1	3	6	2	3	3	3	4	3	1	0	1	
+6	1	3	2	3	4	1	0	2	0	1	3	0	3	
+	ð													j

r	$n(r) \ obs. \mid theor.$					
0	18	20.5				
1	51	44.3				
2	36	46.2				
3	40	32.0				
4	14	16.7				
5	7	6.6				
6	2	2.5				
≽ 7	1	1.3				

No. 103. $a = 13^{h}36^{m}$; $B = +78^{0}$. N = 464; $w_{1} = 40$; $w_{2} = 120$. $s_{1} = 9$; $\delta_{1} = 0.67$; $s_{2} = -$; $\delta_{2} = -$

_	-6-	- 5 -	<u>-4 -</u>	-3 -	-2 -	-1	0 -	 - 1 -	 - 2 -	 - 3 -	 4 -	 - 5 -	 -6	$+\alpha$
— 6	1	2	4	1	3	5	3	3	4	1	4	1	1	1 "
-5	4	4	5	5	8	0	2	3	4	2	7	3	1	
-4	0	3	5	4	3	1	0	1	2	2	2	7	1	
3	1	2	10	3	2	3	1	1	0	3	2	0	2	
-2	0	2	4	2	2	3	1	1	5	4	1	1	8	
-1	5	5	1	3	0	3	2	3	1	5	3	3	1	
0	6	1	1	2	3	4	2	2	3	3	3	4	3	
+1	3	3	0	3	3	1	2	1	0	2	3	9	0	
+2	3	3	5	1	1	1	3	6	2	3	6	2	1	
+3	5	2	3	2	4	3	0	2	0	5	5	2	3	
+4	1	5	3	1	1	5	3	5	4	6	3	3	2	
+ 5	0	3	7	5	2	4	4	2	7	3	5	0	4	
+6	1	2	2	6	1	2	1	3	2	2	1	1	1	
+	$-\delta$													•

r		(r) theor.
0	14	11.0
1	36	29.6
2	33	40.7
3	4 0	37.4
4	16	25.8
5	17	14.3
6	5	6.6
7	4	2.5
8	2	0.9
≥9	2	0.4

No. 104. $\alpha = 13^{h}44^{m}$; $B = +76^{o}$. N = 492. —

-	-6 -	-5 -	-4-	-3 ~	<u> -2 -</u>	-1	0 -	 1 -	 - 2 -	- 3 -	-4 -	 -5 -	 - 6	$+\alpha$
6	3	2	8	4	1	4	1	2	4	1	3	3	2	
— 5	1	2	5	3	1	4	4	3	2	1	0	3	4	
-4	6	2	3	6	4	4	3	0	3	5	4	2	2	
-3	0	7	1	5	0	1	0	1	4	2	2	2	3	
2	õ	5	3	2	0	3	3	3	5	5	2	4	2	
1	4	4	3	1	3	1	5	6	3	2	1	2	1	
0	6	6	3	0	2	2	2	2	0	3	3	4	4	
+1	7	2	4	3	1	6	4	1	2	4	1	1	2	
+2	2	1	3	2	2	2	1	1	4	7	4	3	2	
+3	4	3	4	2	4	2	9	2	1	3	1	3	7	
+-4	1	2	2	3	3	2	3	2	4	1	0	3	6	
+5	0	7	2	7	4	4	5	5	4	2	4	1	1	
+6	2	2	3	2	4	5	2	2	5	4	3	4	1	
	سننب													-

r	$\left egin{array}{c} n \\ obs. \end{array} ight $	(r) $theor.$
0	10	8.6
1	27	25.3
2	42	37.6
3	32	38.0
4	32	28.3
5	11	17.0
6	7	8.3
7	6	3. 5
8	1	1.3
≥9	1	0.8

+ 8

№ 105.
$$a = 13^{h}52^{m}$$
; $B = +75^{0}$. $N = 478$; $w_{1} = -$; $w_{2} = -$. $[s_{1} = -; \delta_{1} = -; s_{2} = 2; \delta_{2} = 8.0]$

-	-6 -	-5 -	-4 -	-3 -	<u>-2</u> -	-1	0 -	- 1 -	 - 2 -	 - 3 -	-4 -	 - 5·-	+6	$1 + \alpha$
6	4	0	1	3	2	2	3	4	3	5	2	2	2	' "
-5	1	5	6	2	1	3	2	2	3	8	4	2	1	
-4	3	3	3	1	3	2	1	5	5	8	4	4	2	
-3	1	4	4	2	5	3	4	2	2	2	2	2	5	
-2	1	3	1	5	1	1	4	3	1	5	2	4	0	
-1	3	1	3	1	3	2	1	3	7	5	2	2	1	
0	5	5	1	6	1	3	4	2	2	1	5	2	4	
+1	2	3	2	3	2	6	5	4	1	5	2	2	2	
+2	2	4	3	0	6	4	1	1	2	5	4	1	2	
+3	1	7	2	5	2	2	4	4	5	4	3	1	3	
+4	1	6	4	3	5	4	1	3	4	1	3	4	1	
+5	0	2	0	5	2	2	3	2	2	0	4	1	2	
+6	1	2	1	6	2	6	3	2	2	3	2	3	1	
+	δ													

r		(r) theor.
0	6	10.2
1	33	28.4
2	46	40.0
3	3 0	37.6
4	24	26.5
5	19	15.3
6	7	7 .2
7	2	2.8
≥8	2	1.5

No. 106. $a = 14^{h}0^{m}$; $B = +73^{o}$. N = 482. —

-	<u>-6 -</u>	-5 -	-4 -	_ 3 -	_2	<u>-1</u>	0 -	 -1 -	- 2 -	 3 -	 4 -	 - 5 -	 - 6
-6	1	1	4	6	4	6	5	2	5	4	2	1	2
5	1	2	4	4	1	3	2	4	5	4	4	1	7
-4	2	2	1	1	4	2	4	2	2	4	2	3	4
3	0	3	3	9	3	1	1	1	4	4	3	4	1
-2	1	2	4	4	1	2	0	3	6	5	3	5	3
1	2	3	0	1	0	3	1	3	3	1	2	3	3
0	2	3	1	4	4	2	0	1	2	4	4	3	в
+1	1	2	4	2	3	3	4	1	4	2	4	4	3
-+2	1	2	3	3	4	5	3	3	3	4	0	3	7
+3	1	4	2	2	3	1	2	3	3	4	2	1	2
+4	4	4	2	3	4	9	2	· 1	2	3	4	6	2
+5	0	2	3	3	3	3	3	3	4	6	2	2	1
+6	3	2	1	4	5	3	5	2	4	0	1	5	3
					_								

r	$ \begin{array}{c} n \\ obs. \end{array}$	(r) theor.
0	8	9.7
1	29	27.2
2	36	39.1
3	4 0	37.9
4	37	27.0
5	9	15.8
6	6	7.5
7	2	3. 0
8	0	1.0
≥9	2	0.6

No. 107. $a = 14^{h}8^{m}$; $B = +71^{o}$. N = 559; $w_{1} = -$; $w_{2} = -$. $[s_{1} = 3; \delta_{1} = 0.33; s_{2} = -; \delta_{2} = -]$

-	-6 -	-5 -	-4-	-3 -	<u>-2</u> -	-1	0 -	 -1 -	 - 2 -	 - 3 -	-4 -	 -5 -	 -6
6	1	2	5	3	2	1	5	2	6	4	2	1	5
— 5	0	9	2	5	3	5	4	3	2	2	2	2	4
-4	4	5	1	2	7	2	1	4	1	7	1	9	2
-3	5	2	5	1	2	3	3	3	0	0	4	5	2
-2	7	3	4	4	1	6	6	3	4	2	3	0	4
1	2	3	4	3	4	2	2	3	1	4	3	8	3
0	2	4	1	9	1	3	3	8	3	6	3	3	4
+1	4	3	3	4	1	3	2	3	4	4	3	2	2
+2	0	7	3	2	1	2	2	3	5	1	4	4	4
+3	1	5	2	2	5	4	2	4	2	7	5	4	4
+-4	6	4	5	0	5	3	4	7	2	3	5	1	4
+5	4	1	5	2	1	1	3	5	3	2	1	3	1
+6	4	3	3	5	6	4	8	6	1	5	4	3	1

r	$\begin{vmatrix} n \\ obs. \end{vmatrix}$	(r) theor.
0	6	6.2
1	24	20.8
2	33	34.0
3	34	37.6
4	33	31.0
5	20	20.3
6	7	11.3
7	6	5.3
8	3	2.2
≥9	3	1.5

 $+\delta$

No. $a = 14^{h}16^{m}$; $B = +69^{o}$. N = 389; $w_{1} = 3$; $w_{2} = 1.8$. $s_{1} = -$; $s_{1} = -$; $s_{2} = -$; $s_{2} = -$

-	- 6 -	-5 -	-4 -	<u> </u>	<u>-2 -</u>	<u>-1 •</u>	0 -	+1	+ 2 -	+3 -	+4 -	 5 -	+6	+0
-6	1	3	2	2	0	2	4	1	1	1	0	1	0	' "
— 5	2	3	3	2	1	1	2	2	1	3	3	2	1	
-4	5	0	4	3	5	2	4	3	5	1	0	3	3	İ
3	1	6	0	6	3	5	4	3	2	6	1	5	3	l
2	0	4	4	3	5	3	1	2	3	2	4	2	1	
1	3	2	4	2	3	1	1	1	1	4	3	3	1	
0	3	3	2	3	3	3	1	2	2	3	1	2	5	ĺ
+1	2	1	2	0	1	0	2	4	3	3	4	3	0	ĺ
+2	2	6	2	3	2	2	1	1	4	2	3	1	1	
+3	3	1	3	4	3	3	3	4	2	5	4	2	1	ĺ
+4	0	6	0	2	2	4	3	5	3	1	0	5	2	
-+5	5	0	2	0	2	3	0	0	0	3	2	0	0	
+6	3	3	2	2	0	1	1	3	1	2	1	3	1	
														l

r	$\begin{vmatrix} n \\ obs. \end{vmatrix}$	(r) theor.
0	21	16.6
1	35	38.8
2	38	45.0
3	43	34.8
4	16	20.0
5	11	9.1
$\geqslant 6$	5	5.2

No. 110. $a = 14^{h}32^{m}$; $B = +66^{o}$. N = 411; $w_{1} = 14$; $w_{2} = 150$. $s_{1} = -$; $s_{1} = -$; $s_{2} = 11$; $s_{2} = 5.5$

 $+\alpha$

-	-6 -	<u>-5 -</u>	-4 -	-3 -	<u> -2 -</u>	-1	0 -	- 1 -	 - 2 -	-3 -	-4 -	 - 5 -	 -6
 6	3	2	2	3	3	0	3	1	2	2	2	1	1
— 5	0	2	4	4	0	2	4	0	3	1	Ó	2	1
-4	1	2	4	1	1	2	3	2	0	2	3	1	2
-3	3	2	2	2	3	1	4	3	2	4	2	2	3
— 2	3	1	4	1	1	2	1	3	1	3	1	1	1
-1	2	2	1	1	1	1	2	2	1	2	1	6	5
0	1	4	3	1	4	2	2	3	4	5	4	4	1
+1	4	2	0	3	4	0	0	2	0	0	2	5	1
+2	0	3	4	4	1	4	3	8	4	4	4	0	1
+3	1	0	0	2	8	2	5	3	4	2	6	1	2
+4	1	2	2	1	4	3	3	4	2	4	3	4	1
+5	4	3	1	3	1	1	2	8	6	5	4	5	0
+6	0	0	2	6	5	2	6	4	2	6	7	1	1
+	8												

r	n	(r) $theor.$
	008.	theor.
0	18	14.9
1	4 0	36. 3
2	41	44. 3
3	25	35.7
4	28	21.5
5	7	10.4
6	6	4.1
7	1	1.4
≥8	3	0.5

No. 111.
$$a = 14^{h}40^{m}$$
; $B = +64^{o}$. $N = 541$. —

-	-6-	-5 -	-4 -	-3 -	<u>-2</u> -	-1	0 -	$+\alpha$						
6	1	2	2	5	2	1	4	1	3	2	1	1	1	۱ ۵
-5	5	2	4	5	3	6	2	4	3	0	5	1	3	
-4	3	6	3	4	4	4	3	3	5	5	2	1	1	
-3	4	4	1	3	3	2	3	2	3	2	3	4	4	
-2	1	1	2	3	4	5	3	3	4	3	2	2	3	
-1	6	5	6	3	3	3	5	3	3	3	4	2	7	
0	5	2	3	2	2	2	5	6	4	5	3	4	1	
+1	4	5	6	2	0	4	2	9	5	3	8	2	4	
+2	2	5	3	3	1	7	2	2	1	7	6	5	1	
+3	2	3	5	6	2	7	3	4	3	1	3	2	6	
+4	5	1	4	6	3	3	5	1	3	3	4	4	2	
+5	3	1	4	2	2	1	6	3	1	1	2	4	7	
+6	1	2	3	4	4	4	2	0	3	2	1	2	2	
+	δ													•

r	obs.	(r) theor.
0	3	7.0
1	25	22.0
2	36	35.0
3	41	37.9
4	27	30.3
5	19	19.3
6	11	10.4
7	5	4. 8
8	1	1.9
≥9	1	1.1

No. 112. $a = 14^{h}48^{m}$; $B = +62^{0}$. N = 652; $w_{1} = -$; $w_{2} = 6$. $s_{1} = -$; $s_{2} = -$; $s_{2} = -$; $s_{2} = -$

_	-6 -	-5 -	_4 -	-3 -	<u>-2</u> -	1	0 -	+1	+ 2 ·	+3 -	 4 -	 - 5 -	+6	$+\alpha$
—6	1	3	2	1	4	2	5	3	4	3	1	1	3	"
— 5	2	4	5	5	4	2	3	3	7	3	2	4	2	
-4	4	3	5	3	6	1	2	4	2	2	2	3	5	
_3	3	4	5	2	3	8	3	8	4	5	7	2	6	
-2	0	3	1	3	3	3	5	4	6	4	4	3	3	
-1	2	6	1	3	5	6	3	7	3	10	4	1	2	
0	3	2	2	7	6	7	9	7	5	6	2	5	2	
+1	3	6	1	4	8	5	6	4	5	3	2	7	2	
+2	3	4	4	4	5	5	6	2	10	5	6	2	4	
+3	5	6	4	5	4	10	3	4	3	7	6	3	4	
+4	2	6	3	7	6	3	5	7	4	7	1	1	1	
+5	3	4	5	7	7	2	8	3	1	3	4	3	2	
+ 6	0	3	1	2	2	1	4	3	0	3	5	2	2	
														3

r	$\begin{vmatrix} n \\ obs. \end{vmatrix}$	(r) theor.
0	3	3.6
1	15	13.7
2	29	26.5
3	38	34. 0
4	27	33.1
5	21	25.8
6	15	16.6
7	13	9.1
8	4	4.4
9	1	1.9
≥ 10	3	1.1

Model 113.
$$α = 14^{h}56^{m}$$
; $B = +60^{0}$. $N = 571$. —

-6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6

-6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6

-6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6

-6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6

-8 -7 -1 1 1 1 5 2 5 4 3 3 4 1 1 2

-9 -7 -1 1 1 3 4 2 2 6 3 2 4 1

-1 3 2 2 3 7 5 5 5 5 3 4 2 2 3

-1 3 2 2 3 2 4 3 2 6 3 3 2 2 5

-1 3 2 2 3 2 4 3 2 6 2 3 5 2

0 4 3 3 2 3 4 1 3 2 2 2 5 3

-1 6 4 4 3 2 2 0 8 3 5 2 7 3

+1 6 4 4 3 2 2 0 8 3 5 2 7 3

+2 1 8 3 2 2 1 6 4 6 1 4 5 3

+3 3 5 6 2 6 6 3 7 1 1 3 3 2 2 2

+5 4 4 1 3 5 3 6 3 3 4 4 6 5

+6 2 2 6 3 2 5 5 3 2 6 2 2 2

N 114. $a = 15^{h}4^{m}$; $B = +59^{o}$. N = 593; $w_1 = -$; $w_2 = 18$. $s_1 = -$; $\delta_1 = -$; $s_2 = 2$; $\delta_2 = 9.5$

	<u>-6 -5 -4 -3 -2 -1</u>							+1-	+2	+3 -	+4-	 - 5 -	+6	ـــــــ ـــــــــــــــــــــــــــــ	r	n	(r)
-6	2	4	4	5	3	4	4	1	3	5	2	1	1	$+\alpha$		obs.	theor.
								1				1	_		0	4	5.2
- 5	3	2	4	4	7	11	8	4	1	3	6	1	2		1	18	17.7
-4	1	4	3	6	9	2	4	6	3	3	5	1	0		2	39	31.0
-3	7	2	5	2	3	· 3	2	5	3	1	1	6	2		3	37	36.6
-2	4	6	4	5	3	4	3	2	2	3	2	5	3		4	23	32.2
-1	2	• 3	11	6	1	4	5	4	5	5	4	2	2		5	21	22.6
0	6	3	6	7	3	4	1	8	3	10	8	7	2		6	15	13.2
															7	5	6.5
+1	5	6	6	5	4	5	3	3	2	3	3	2	2		8	3	2.9
+2	ō	2	6	7	1	5	1	6	3	4	3	1	4		9	1	1.2
+ 3	2	2	5	2	3	2	2	2	3	3	2	0	4		≥ 10	3	0.6
+4	2	2	2	3	3	4	3	6	3	5	6	2	5				
+5	6	4	5	3	3	2	3	1	2	0	4	1	1				
+6	2	5	3	5	3	2	1	1	3	2	2	2	2				
+	8				•									•			

No. 115. $a = 15^{h}12^{m}$; $B = +57^{0}$. N = 716; $w_{1} = -$; $w_{2} = -$. $[s_{1} = -$; $s_{1} = -$; $s_{2} = 2$; $s_{2} = 10.0$]

_	<u>-6 -</u>	-5 -	-4 -	-3 -	-2 -	-1	0 -	 1 -	 - 2 -	-3 -	 4 -	+ 5 -	 -6	$+\alpha$
-6	3	1	1	2	3	4	2	4	7	3	4	3	4	"
5	1	4	5	4	5	2	6	3	5	2	3	6	1	
-4	4	2	6	3	4	10	10	2	7	7	3	3	5	
-3	7	3	2	7	4	7	2	5	4	5	6	5	2	
-2	7	5	3	5	6	4	4	5	8	6	6	4	1	
-1	3	4	9	4	5	5	8	3	6	5	3	2	5	
0	6	2	4	5	6	6	6	2	5	7	1	10	4	
+1	2	3	7	2	5	3	5	3	5	4	3	5	6	
+2	2	7	6	2	3	5	7	8	7	4	2	4	6	
+3	1	4	5	3	8	5	2	6	6	5	6	3	4	
+4	2	4	2	8	4	5	10	4	3	4	2	4	3	
+ 5	3	1	3	5	4	6	4	3	5	3	1	3	2	
+6	1	2	4	1	2	5	3	8	2	3	1	6	3	
+	-δ		`	-										

r	$n(r)$ $obs. \mid theor.$							
i	008.	theor.						
0	0	2.6						
1	12	10.4						
2	25	22.0						
3	31	30.6						
4	30	32.8						
5	28	28.0						
6	20	19.7						
7	12	12.0						
8	6	6.4						
9	1	3.1						
≥10	4	2.1						

No. 116. $a = 15^{h}20^{m}$; $B = +55^{o}$. N = 746.

_	-6 -	- 5	-4 -	-3 -	-2 -	-1	0 -	 1	+2-	 - 3 -	 -4	 - 5 -	 - 6	$+\alpha$
6	3	3	6	3	1	6	2	5	10	7	9	3	4	"
— 5	7	5	5	1	6	8	6	0	2	2	5	3	3	
-4	2	4	5	7	5	3	7	5	6	3	4	6	4	
- 3	3	3	10	2	1	8	9	3	5	4	5	9	3	
2	-5	2	4	1	2	3	6	4	2	7	5	7	4	
1	5	6	5	3	2	1	3	1	5	5	8	4	5	
0	10	6	8	8	4	2	6	4	2	5	4	7	8	
+1	5	9	3	3	1	3	1	4	2	3	2	3	3	
+2	4	7	4	1	6	3	5	5	7	7	6	4	4.	
+3	5	4	2	3	2	3	2	4	7	3	2	6	5	
+4	4	4	4	3	5	6	4	5	6	4	3	2	3	
+5	3	5	5	8	6	4	7	3	2	4	6	6	4	
+6	7	4	5	5	2	3	8	4	6	3	5	1	4	
	<u> </u>													•

r		(r) theor.
0	1	2.1
1	10	9.1
2	20	19.9
3	32	29.1
4	30	32.3
5	29 •	28.6
6	19	21.1
7	13	13.3
8	8	7.3
9	4	37
≥ 10	3	2.4

No. 117.
$$a = 15^{h}28^{m}$$
; $B = +53^{o}$. $N = 725$; $w_{1} = -$; $w_{2} = -$. $[s_{1} = -$; $\delta_{1} = -$; $s_{2} = 2$; $\delta_{2} = 10.0$]

r	obs.	(r) theor.
0	3	2.4
1	13	10.1
2	16	21.3
3	32	30.2
4	35	32.7
5	26	28.2
6	20	20.3
7	9	12.5
8	7	6.6
9	6	3.3
10	1	1.4
≥11	1	1.1

№ 118. $a = 15^{h}36^{m}$; $B = +51^{o}$. N = 730; $w_{1} = 40$; $w_{2} = 120$. $s_{1} = 2$; $\delta_{1} = 0.5$; $s_{2} = 4$; $\delta_{2} = 9.5$

 $+\alpha$

-	-6 -	- 5	-4 -	-3	2 -	-1	0 -	+1 -	+ 2 -	+3-	+4 -	+5 -	+6
-6	6	4	7	3	2	5	2	4	5	2	6	3	1
— 5	4	4	8	7	8	8	5	5	3	1	5	2	4
-4	4	9	5	4	4	1	3	4	4	3	2	4	3
-3	3	5	5	2	в	3	3	4	4	4	4	5	1
-2	11	2	6	3	10	4	3	3	8	3	7	4	2
-1	3	9	12	õ	6	3	6	5	5	2	4	8	5
0	2	2	8	9	2	8	1	1	7	2	5	6	3
+1	3	7	3	1	4	1	3	4	2	3	2	6	3
+2	7	4	6	0	5	4	2	0	3	0	9	8	1
+3	4	4	2	3	4	1	7	3	6	7	1	7	6
+4	5	8	7	8	2	4	3	5	2	1	5	5	3
+ 5	2	9	5	5	6	4	6	9	1	3	3	5	3
+6	2	3	5	9	3	6	5	3	6	2	7	2	4

. r .	$ \begin{array}{c} n(r) \\ obs. & theor \end{array}$						
0	3	2.3					
1	13	9.8					
2	23	21.0					
3	32	30.0					
4	28	32.6					
5	24	28.3					
6	15	20.4					
7	11	12.6					
8	10	6.8					
9	7	3.3					
10	1	1.4					
11	1	0.6					
≥ 12	1	0.2					

+8

No. 119. $a = 15^{h}44^{m}$; $B = +50^{o}$. N = 461; $w_{1} = -$; $w_{2} = -$. $[s_{1} = -$; $s_{1} = -$; $s_{2} = 6$; $s_{2} = 6.0$]

_	-6 -	-5 -	-4 -	- 3 -	-2 -	-1	0 -	+1 -	 - 2 -	 - 3 -	 4 -	 - 5 -	+ 6	$+\alpha$
-6	3	4	0	6	4	2	5	4	5	2	2	0	- 1	¬ u
5	0	4	3	3	3	4	3	5	1	2	1	2	5	
-4	2	2	1	5	4	1	6	6	6	5	1	3	3	
3	1	4	5	4	3	4	3	4	5	7	2	2	0	
2	3	5	2	3	2	4	0	4	3	6	5	4	2	
-1	0	4	1	3	4	2	2	3	4	3	1	5	4	
0	2	3	3	2	3	2	1	2	2	2	6	1	3	
+1	2	3	3	1	2	2	3	0	2	2	1	1	1	
+2	5	3	5	0	3	2	3	3	2	2	3	4	0	İ
+3	3	5	3	1	0	1	1	3	2	4	2	3	2	
+4	1	2	6	2	3	1	3	1	2	3	4	5	3	
+5	3	2	1	2	1	4	4	5	3	5	1	3	4	
+6	2	4	3	2	1	1	1	5	1	1	1	3	0	
+	-δ													l

r	obs.	(r) $theor.$
0	11	11.2
1	3 0	30.0
2	38	40.9
3	40	37.4
4	24	25.6
5	18	14.3
6	7	6.5
≽ 7	1	3.6

No. 120. $a = 15^{h}52^{m}$; $B = +48^{o}$. N = 848.

_	-6-	- 5	_4 -	—3 -	-2-	-1	0 -	+ 1 -	+ 2 ·	+3	+4 -	 - 5 -	 -6	
-6	1	2	3	5	1	3	4	3	3	4	6	4	3	+ '
5	3	6	3	7	5	7	8	5	4	3	1	3	4	
-4	6	4	12	5	4	8	2	4	3	6	5	4	6	
-3	3	1	6	5	4	4	5	5	6	7	8	4	4	
2	3	2	4	5	7	6	2	3	5	3	4	2	8	
1	8	7	4	6	6	9	4	4	4	4	3	8	7	
0	2	7	3	8	3	8	3	4	3	11	7	6	4	
+1	4	8	7	7	1	5	6	7	5	5	5	6	8	
+2	8	2	1	5	4	7	1	6	4	6	5	6	7	
+3	5	в	4	4	4	8	8	9	4	10	8	7	8	
+4	5	5	6	5	7	5	7	4	2	6	4	4	1	
+5	4	5	10	6	5	7	3	9	5	5	5	9	4	
+6	2	6	2	4	5	5	4	10	3	5	11	3	0	
+	δ													•

r	$\begin{vmatrix} n \\ obs. \end{vmatrix}$	(r) theor.
0	1	1.2
1	8	5.7
2	10	14.0
3	22	23.5
4	36	29.5
5	29	3 0.0
6	21	24.9
7	17	18.1
8	15	11.1
9	4	6.2
10	3	3.1
11	2	1.4
\geqslant 12	1	0.8

No. 121.
$$\alpha = 16^{h}0^{m}$$
; $B = +46^{o}$. $N = 445$; $w_{1} = -$; $w_{2} = -$. $[s_{1} = 18; \delta_{1} = 0.94; s_{2} = -; \delta_{2} = -]$

r	$\begin{vmatrix} n \\ obs. \end{vmatrix}$	(r) theor.
0	15	12.3
1	30	32.2
2	37	41.9
3	41	37 .0
4	22	24.3
5	17	13.1
6	5	5.7
7	1	2.0
≥8	1	1.1

No. 122. $a = 16^{h}8^{m}$; $B = +44^{o}$. N = 461; $w_{1} = 120$; $w_{2} = 360$. $s_{1} = 20$; $\delta_{1} = 0.80$; $s_{2} = -$; $\delta_{2} = -$

 $+\alpha$

_	-6 -	-5 -	-4 -	-3 -	-2 -	-1	0+1+2+3+4+5+6								
6	2	5	2	3	2	0	2	1	4	4	2	2	2		
5	4	6	2	1	4	1	6	2	1	0	1	2	1		
4	9	1	4	2	2	3	2	6	1	1	1	3	4		
-3	3	3	4	6	0	4	7	4	6	5	4	6	1		
-2	2	0	4	2	2	4	3	1	5	1	2	4	2		
1	3	3	1	3	4	3	0	1	6	4	3	2	5		
0	0	1	5	0	1	1	1	3	1	3	0	6	3		
+1	1	3	4	3	3	2	2	0	1	5	1	2	1		
+2	3	5	8	2	2	4	3	1	0	4	5	3	1		
→ 3	0	4	2	4	0	3	1	3	0	3	5	3	4		
+4	2	1	1	3	4	1	5	2	5	4	1	9	3		
+5	1	2	2	5	4	4	1	0	7	4	5	1	1		
+6	1	0	5	3	4	5	1	5	4	2	0	1	2		
+	8														

r		(r) theor.
0	16	11.2
1	3 8	30.1
2	31	40.7
3	27	37.4
4	28	25.7
5	16	14.2
6	8	6.5
7	2	2.4
8	1	0.8
≥9	2	0.4

No. 123. $a = 16^{h}16^{m}$; $B = +42^{\circ}$. N = 718; $w_{1} = 360$; $w_{2} = 1500$. $s_{1} = 8$; $\delta_{1} = 1.1$; $s_{2} = 17$; $\delta_{2} = 7.7$

-	-6-	<u>5</u> -	-4 -	- 3	<u>_2</u> -	-1	0 -	 1 -	 1 2 -	 -3 -	 4	+ 5 -	+6	+ 0
— 6	3	3	1	5	3	4	10	3	8	4	1	4	4	٦٠
— 5	2	1	2	2	4	5	10	7	5	4	5	9	7	
-4	5	3	3	5	8	9	8	3	4	5	6	0	4	
-3	5	1	4	2	0	2	3	5	6	2	4	3	3	
-2	5	4	1	6	6	3	4	3	2	2	5	5	6	ł
-1	2	5	4	4	3	2	2	5	3	7	7	7	1	
0	9	3	4	2	11	5	4	4	3	2	7	8	2	
+1	2	0	6	1	2	6	1	5	4	8	6	7	7	
+2	2	1	6	6	4	5	2	2	8	5	0	4	4	
+3	3	5	3	3	4	7	3	2	5	4	4	5	2	
+4	6	3	9	4	5	6	10	8	2	2	3	6	5	
+5	0	2	4	8	4	3	5	1.	2	4	6	7	5	
+6	1	1	3	5	3	3	7	7	6	8	4	10	5	
اند	χ.	•												l

r		t(r) theor.
0	6	2.4
1	12	10.2
2	25	21.6
3	26	30.4
4	29	32.7
5	27	28.1
6	14	20.0
7	12	12.4
8	9	6.6
9	4	3.2
10	4	1.4
≥ 11	1	0.8
1		

№ 124. $a = 16^{h}24^{m}$; $B = +41^{o}$. N = 1362; $w_{1} = 230$; $w_{2} = 100$. $s_{1} = -$; $s_{1} = -$; $s_{2} = 4$; $s_{2} = 15.8$

-	<u>-6</u>	— 5	-4	-3	_2	1	0	+1	+2	+3	+4	+ 5	+6	+ α
-6	7	11	9	11	9	12	6	6	5	3	10	7	8	"
- 5	8	16	10	12	10	10	7	7	4	5	6	4	12	
-4	1	10	11	14	13	8	8	16	8	5	12	3	10	
-3	4	4	3	9	8	3	7	4	12	9	8	8	7	
2	5	8	5	8	13	5	9	8	6	11	6	8	5	
-1	8	4	8	5	7	7	6	10	8	8	4	9	10	
0	8	4	6	6	3	5	8	12	8	15	11	4	5	ļ
+1	8	7	7	5	4	5	9	4	7	5	10	5	11	
+2	5	4	14	9	12	10	7	8	2	9	14	6	7	
+3	4	6	3	6	9	11	7	8	6	5	13	10	10	
+4	8	8	10	9	10	5	5	9	5	7	6	7	5	
+5	8	7	10	24	9	8	17	9	9	9	12	14	8	
+6	11	13	13	13	5	19	6	10	9	5	5	13	4	
_1	S												استست	,

r	$egin{array}{c} n(r) \ obs. \mid theor. \end{array}$							
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \geqslant 16 \\ \end{array}$	0 1 1 6 14 23 14 17 27 17 16 8 7 4 1 5	0.1 0.5 1.8 4.6 9.4 15.2 20.4 23.5 23.9 21.1 17.3 12.5 8.5 5.3 3.0 1.6 1.6						

No 125.
$$a = 16^{h}32^{m}$$
; $B = +39^{0}$. $N = 550$; $w_{1} = -$; $w_{2} = -$. $[s_{1} = 26$; $\delta_{1} = 1.6$; $s_{2} = 3$; $\delta_{2} = 8.3$]

-	-6-	<u>-5 -</u>	-4 -	-3 -	-2-	-1	0 -	 	 - 2 -	 - 3 -	 4 -	 - 5 -	+6	
— 6	2	2	4	6	3	4	4	5	0	5	3	3	2	
-5	0	5	2	4	3	4	1	4	4	1	4	4	3	
4	1	3	5	2	5	2	3	3	2	5	5	6	4	
— 3	3	2	1	2	2	3	1	2	2	2	3	2	1	
2	3	2	4	6	2	1	2	4	6	2	3	7	4	l
-1	2	1	1	2	2	1	3	2	6	3	4	5	8	
0	2	0	3	1	3	0	2	2	2	3	3	7	11	
+1	1	5	1	1	2	1	3	1	2	2	4	3	4	İ
+2	2	0	0	6	0	4	3	3	2	1	8	6	6	İ
+3	3	4	2	2	0	4	3	4	4	1	5	2	4	ĺ
+4	3	3	3	2	5	4	3	3	2	3	5	10	7	ĺ
+5	4	3	3	7	9	4	4	2	0	3	4	2	4	
+6	4	4	3	3	9	6	7	3	1	7	1	5	7	
+	δ													ı

r		(r) theor.		
0	9	6.7		
1	20	21.6		
2	38	34.6		
3	37	37.8		
4	3 0	30.6		
5	13	19.8		
6	9	10.9		
7	7	5.0		
8	2	2.0		
9	2	0.7		
≥ 10	2	0.4		

№ 126. $a = 16^{h}40^{m}$; $B = +37^{o}$. N = 788; $w_{1} = 3$; $w_{2} = 13$. $[s_{1} = 5; \delta_{1} = 1.0; s_{2} = 7; \delta_{2} = 9.0]$

_	-6 -	-5 -	-4	<u>-3</u> -	-2 -	-1	0 -	 	 - 2 -	+3-	-4 -	+ 5 -	 -6	$+\alpha$
-6	3	2	5	6	3	9	6	8	3	6	8	5	1	1 4
— 5	8	4	4	6	5	1	4	7	3	8	4	5	5	
-4	6	5	4	5	4	5	6	6	5	3	5	10	4	er e
-3	3	3	8	6	4	4	5	3	1	4	4	<i>13</i>	7	
-2	5	6	6	5	3	3	7	8	7	5	9	9	4	
-1	2	8	7	7	6	3	2	5	0	2	7	8	5	
0	8	9	2	4	3	1	3	5	3	6	3	5	7	
+1	5	6	6	4	3	1	2	3	4	8	3	5	2	
+2	4	3	7	7	3	2	6	4	4	3	4	7	5	
+3	2	4	3	3	4	3	2	5	1	7	4	0	5	
+4	6	5	5	15	3	1	2	2	5	3	4	2	6	
+5	3	4	6	2	7	5	2	5	4	7	1	1	3	
+6	9	6	5	4	7	6	8	4	7	3	1	4	1	
										_				•

	- n	(r)
r		theor.
0	2	1.7
1	11	7.6
2	15	17.4
3	29	26.8
4	28	31.4
5	29	29.3
6	20	22.8
7	16	15.2
8	11	8.8
9	5	4.6
10	1	2.1
11	0	0.9
≥ 12	2	0.4

No 127. $a = 16^{h}48^{m}$; $B = +35^{0}$. N = 1243; $w_{1} = 2400$; $w_{2} = 6000$. $s_{1} = 12$; $\delta_{1} = 2.1$; $s_{2} = 12$; $\delta_{2} = 13.2$

-	 6-	- 5 -	_4 -	<u>-3</u>	_2	<u>-1</u>	0 -	+1 -	+2	+3	+4	+ 5 ·	+6	-
6	7	10	6	6	10	1	5	9	4	8	9	7	2	! '
— 5	12	5	8	4	9	3	7	9	11	8	4	6	8	
-4	12	8	7	9	3	9	6	10	8	12	9	8	9	
-3	14	7	4	9	9	7	6	8	8	11	9	5	4	l
-2	12	6	4	7	12	3	12	14	14	9	3	6	7	
-1	14	9	6	7	7	9	3	14	5	6	12	8	5	
0	7	9	12	8	10	7	12	10	9	11	12	<i>16</i>	10	
+1	9	6	10	12	11	12	7	5	15	7	10	5	11	
+2	6	11	8	4	7	10	10	5	3	3	7	11	6	
+3	1	3	10	8	9	5	6	5	8	7	8	7	6	
+4	1	7	6	8	7	6	8	7	12	8	2	6	4	
+5	1	7	6	5	;8	8	9	4	4	4	5	1	6	
+6	3	2	4	3	5	7	6	14	6	3	3	3	4	
+	-δ													I

r		(r) theor.
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \geqslant 16 \\ \end{array}$	0 5 3 13 13 13 21 23 20 19 11 7 13 0 6 1	0.2 0.8 3.0 7.1 13.3 19.5 23.6 25.0 23.1 18.6 13.8 9.2 5.7 3.2 1.8 0.8 0.7

№ 128. $\alpha = 16^{h}56^{m}$; $B = +33^{0}$. N = 408; $w_{1} = 3$; $w_{2} = 11$. $[s_{1} = 15; \delta_{1} = 0.47; s_{2} = -; \delta_{2} = -]$

_	-6 -	-5 -	-4 -	-3 -	-2-	-1	0 -	$+\alpha$						
-6	1	1	4	1	2	5	3	4	3	4	0	3	4	"
— 5	2	3	1	1	5	4	2	1	6	2	4	6	6	
-4	1	3	3	2	3	1	2	0	1	5	2	2	3	
-3	3	0	1	3	3	1	3	2	3	4	2	2	1	
2	5	3	1	5	1	2	1	4	0	3	3	6	1	
1	1	2	3	1	0	2	3	5	0	2	4	2	4	
0	8	3	2	2	4	1	0	0	1	2	3	6	4	
+1	1	3	1	0	0	1	0	0	1	1	2	3	6	
+2	6	2	5	2	2	2	0	2	1	4	0	5	1	
+3	2	6	2	3	2	3	2	2	3	2	4	4	3	
+4	2	2	2	1	1	4	2	3	2	1	2	1	2	
+5	0	4	5	2	0	2	4	2	2	2	3	1	2	
+6	2	0	1	3	3	3	5	1	1	4	4	3	1	

r		(r) $theor.$
0	17	15.0
1	36	36.8
2	45	44.3
3	32	35.6
4	20	21.3
5	10	10.2
6	8	4.1
7	0	1.4
≥8	1	0.5
·		

No. 129.
$$\alpha = 17^{\text{h}}4^{\text{m}}$$
; $B = +32^{\text{o}}$. $N = 677$; $w_1 = 5$; $w_2 = 60$. $s_1 = 29$; $\delta_1 = 1.8$; $s_2 = 6$; $\delta_2 = 10.7$

-	-6 -	- 5 -	-4 -	-3 -	<u>-2</u> -	-1	0 -	+1	+2 -	+3 -	 4 -	+ 5 -	+6	$+\alpha$	r
-6	2	4	5	4	6	6	8	7	12	4	4	2	5	1	0
5	4	5	4	4	2	5	6	14	6	7	7	4	3		1
-4	3	3	1	2	0	2	8	7	2	3	5	6	5		2
-3	4	1	4	3	0	2	3	4	4	3	2	2	2		3
_2	4	1	2	2	3	1	2	2	3	4	4	2	1		4
-1	1	3	2	3	1	1	3	0	3	2	6	12	5		5
0	6	5	2	5	3	3	1	2	4	6	3	10	5		6
+1	3	5	1	2	1	4	4	4	2	5	1	9	5		7
+2	4	2	8	4	7	4	2	2	7	5	7	4	7		8 9
+3	6	4	5	2	3	3	3	2	6	4	4	3	4		10
+4	4	3	10	5	1	3	3	4	6	2	5	3	6		≥11
+5	5	3	3	3	3	4	9	7	3	1	9	2	5		
+6	4	3	4	6	3	3	4	7	6	5	5	6	$\frac{\circ}{2}$		
								•							
+	-δ														

r		(r) theor.				
0	3	3.2				
1	14	12.2				
2	29	24.7				
3	33	32.9				
4	33	33.2				
5	21	26.7				
6	15	17.5				
7	10	10.4				
8	3	5.1				
9	3	2.3				
10	2	0.9				
≥11	3	0.5				

№ 130. $a = 17^{\text{h}}12^{\text{m}}; B = +30^{\circ}. N = 1121; w_1 = 26; w_2 = 3.$ $s_1 = 12$; $\delta_1 = 3.0$; $[s_2 = 9$; $\delta_2 = 11.8]$

	<u>6-</u>	<u>-5</u>	-4	-3	<u>-2</u> -	-1	0	+1	+2	+3	+4-	+ 5 -	+6
-6	2	8	6	10	7	6	9	10	12	4	4	7	5
— 5	4	2	8	6	12	6	7	8	12	8	13	3	3
4	10	11	11	8	7	7	7	10	12	4	11	6	7
_3	6	8	7	9	6	4	7	3	8	11	7	5	6
- 2	5	2	9	4	5	4	6	5	9	8	8	3	6
-1	12	11	5	5	6	8	5	6	5	4	5	3	3
0	10	9	5	7	4	3	5	3	7	4	3	3	4
+1	10	9	10	7	7	7	7	4	5	6	2	7	7
+2	6	8	6	6	9	4	3	3	8	4	3	4	8
+3	3	11	8	6	9	4	6	6	10	3	9	9	9
+4	3	8	11	6	6	4	7	7	18	12	10	8	5
+5	4	7	9	10	7	5	8	6	6	8	4	2	4
+6	8	4	10	8	10	5	5	2	8	9	5	6	9
(_				

r	obs.	(r) theor.				
0	0	0.3				
1	0	1.5				
$\frac{1}{2}$	6	4.8				
3	17	10.9				
4	21	17.8				
5	18	23.6				
6	24	26.3				
7	22	25.0				
8	20	20.9				
9	14	15.5				
10	12	10.4				
11	7	6.2				
12	6	3,5				
≥13	2	3.5				

No. 131. $a = 17^{\text{h}}20^{\text{m}}$; $B = +28^{\circ}$. N = 658; $w_1 = 350$; $w_2 = 14$. $s_1 = 21$; $s_1 = 1.1$; $s_2 = -$; $s_2 = -$

-	-6 ·	5 -	<u>-4 -</u>	- 3 -	<u>-2</u> -	-1	0 -	+ 1 -	+2	+3 -	 4	+5	+6	. + 0
-6	4	2	5	3	5	2	3	7	3	7	2	1	4	'
— 5	3	1	4	1	6	7	3	6	5	10	5	3	5	
-4	2	5	4	1	7	3	0	5	4	3	6	8	2	
— 3	3	2	4	2	2	2	1	3	6	7	3	6	10	
-2	2	4	5	1	3	3	3	7	3	5	2	6	6	
-1	2	2	3	4	3	0	2	2	1	2	5	2	4	İ
0	3	3	0	0	1	1	1	2	2	5	6	8	10	
+1	5	3	4	3	2	1	1	0	2	3	1	7	4	
+2	4	5	3	2	2	1	0	0	2	2	3	10	3	İ
+3	7	7	4	1	3	3	2	4	2	3	5	4	5	İ
+4	8	5	5	8	2	6	4	7	3	5	8	4	6	
+5	2	3	7	3	9	7	4	2	4	6	4	5	4	
+6	6	12	6	6	7	8	2	7	4	6	2	4	2	
+	δ													J

	r	obs.	$n(r) \ \ theor.$			
	0	7	3.5			
	1	15	13.5			
	2	33	27.0			
ı	3	31	31.2			
	4	23	33.0			
	5	19	27.7			
	6	15	19.2			
1	7	14	11.6			
ı	8	6	6.1			
ı	9	1	2.9			
	10	4	1.2			
ı	≽11	1	0.8			
ı						
I						
ı						

No. 132. $a = 17^{\text{h}}28^{\text{m}}$; $B = +26^{\circ}$. N = 635; $w_1 = 4$; $w_2 = 6$. $s_1 = -$; $s_2 = -$; $s_2 = -$; $s_2 = -$

_	-6 -	-5 -	-4 -	<u>-3 -</u>	-2 -	-1	0+1+2+3+4+5+6							
6	1	3	1	3	5	3	4.	5	3	4	4	2	3	$oxed{\dagger}$
— 5	3	5	4	8	4	1	4	4	12	7	2	7	2	
-4	9	1	5	6	6	6	4	5	6	3	5	5	5	
-3	6	5	2	4	6	3	1	5	2	3	2	4	1	
-2	4	3	0	2	5	5	4	2	3	4	2	4	3	
-1	2	4	1	3	1	2	2	5	3	5	5	4	9	
0	4	6	5	5	3	4	3	5	9	6	5	2	4	
 1	6	3	2	1	2	1	3	2	4	6	3	4	3	
 2	5	3	4	3	1	2	1	4	4	6	5	3	3	
+3	5	3	2	7	2	1	2	3	3	5	5	2	4	
+4	4	5	2	6	3	1 -	1	8	5	5	5	4	3	
 - 5	2	4	4	8	4	3	5	3	1	4	3	4	1	
 -6	2	1	4	5	7	6	7	2	5	3	3	1	1	
+	δ													l

! r		r(r)		
	obs.	theor.		
0	1	4.0		
1	20	15.0		
2	25	27.8		
3	34	34. 8		
4	33	32.9		
5	31	24.9		
6	13	15.5		
7	5	8.4		
8	3	3.9		
9	3	1.6		
10	0	0.6		
11	0	0.2		
≥ 12	1	0.05		

No. 133. $a = 17^{h}36^{m}$; $B = +25^{o}$. N = 1023; $w_{1} = 1700$; $w_{2} = 400$. $s_{1} = 14$; $\delta_{1} = 2.2$; $s_{2} = 8$; $\delta_{2} = 10.8$

-	-6·	5 -	-4	— 3	_2	-1	0	+1	+2	+3	+4	+ 5	+6	$+\alpha$	r	obs.	(r)
6	5	5	6	8	11	5	4	7	8	5	5	2	6	,		 	
— 5	6	7	9	5	4	6	4	7	3	3	3	3	2		0 1	1 5	$\begin{array}{c c} 0.4 \\ 2.4 \end{array}$
-4	5	8	6	7	6	6	7	14	3	10	4	1	4		2	11	7.3
															3	18	14.7
-3	3	2	5	10	10	3	4	4	4	7	4	7	7		4	17	22.1
-2	5	6	3	5	2	4	6	2	2	6	8	12	6		5	22	2 7.4
-1	6	14	3	8	4	1	6	6	7	8	4	8	2		6	31	27.0
0	6	6	6	7	5	4	3	6	1	2	12	9	12		7	17	23.7
													14		8	18	17.9
+1	3	5	8	6	2	8	0	5	7	3	6	5	11		9	8	12.1
+2	5	6	10	9	8	8	2	5	6	9	8	6	7		10	6	7.4
+3	4	7	6	13	4	9	11	5	6	14	3	7	8		11 12	5 5	4.0 2.1
													-		13	$\frac{5}{2}$	0.8
+4	2	8	9	3	7	1 0	13	6	9	8	5	8	6		\geqslant 14	3	0.6
+5	5	4	3	7	12	11	5	11	12	6	6	5	8		11	3	0.0
+6	3	3	6	4	10	6	8	1	7	5	3	1	9				
+	δ									-				1	T		

№ 134. $\alpha = 17^{\rm h}44^{\rm m}$; $B = +23^{\rm o}$. N = 587; $w_1 = -$; $w_2 = -$. $[s_1 = 15$; $\delta_1 = 1.5$; $s_2 = -$; $\delta_2 = -$]

-	-6-	-5 -	-4 -	<u>-3</u>	-2 -	-1	0 -	$+\alpha$						
-6	4	3	2	2	4	5	2	6	2	6	4	6	1	"
5	3	3	2	4	2	2	5	4	1	2	4	6	4	
-4	3	5	2	4	2	9	3	3	5	4	2	2	1	
-3	4	4	3	4	4	0	1	4	7	4	5	5	3	
-2	6	5	2	4	2	4	3	2	3	5	2	5	2	
1	3	2	5	0	2	0	3	2	1	1	1	1	7	
0	3	3	0	2	3	3	2	4	2	2	5	2	$_2$	
+1	4	3	1	2	1	2	3	4	3	4	1	8	5	
+2	5	7	3	4	3	2	4	0	4	2	6	7	4	
+3	4	5	4	4	1	3	3	5	5	2	3	3	3	
+4	4	5	7	5	4	5	3	4	3 .	3	5	3	2	
+5	4	7	5	5	11	2	7	5	7	1	4	6	4	
+6	1	7	3	4	4	2	3	3	2	2	1	4	5	
														,

r	$n(r)$ $obs. \mid theor.$						
0	5	5.3					
1	15	18.1					
2	36	31.4					
3	33	36. 8					
4	37	32.0					
5	24	22.1					
6	7	12.9					
7	9	6.4					
8	1	2.8					
9	1	1.1					
≥ 10	1	0.6					

+0

No. 135. $\alpha = 17^{h}52^{m}$; $B = +22^{0}$. N = 1773; $w_{1} = 18000$; $w_{2} = 400$. $s_{1} = 33$; $\delta_{1} = 5.6$; $s_{2} = 42$; $\delta_{2} = 15.6$

-	-6·	— 5	—4	— 3	2	1	0	+1	+2	+3	+4	+5	+6	^_
6	10	7	6	12	9	6	9	14	3	12	9	7	12	$+^{\alpha}$
— 5	7	6	7	9	12	6	10	11	11	8	12	11	10	
-4	7	7	4	11	4	5	11	1	9	9	7	8	6	
—3	7	10	14	11	12	12	6	5	9	12	8	25	12	
—2	8	6	3	10	10	6	10	9	12	10	18	18	18	
-1	8	8	6	3	12	8	6	12	8	12	12	17	18	
0	6	7	7	10	10	3	10	6	11	12	10	14	9	
+1	15	13	4	6	11	4	9	10	9	10	14	18	7	
+2	14	8	15	9	10	7	4	15	10	14	13	19	14	
+3	15	11	14	17	10	14	19	14	18	12	16	17	12	
+4	10	<i>15</i>	12	17	16	<i>15</i>	12	7	14	12	<i>15</i>	9	10	
+5	10	13	2 0	15	10	<i>15</i>	7	9	16	14	7	14	8	
+6	15	10	11	7	13	15	9	8	5	10	8	12	6	
+	δ													ı

	n(r)								
	obs.	theor.							
0- 1	0+1	0.06							
2— 3	0+4	0.2+ 0.8							
4 — 5	5+ 3	2.4+ 5.0							
6 7	14+16	8.7+13.0							
8 9	12+15	17.2 + 19.9							
1011	23+10	21.2 + 20.0							
12—13	21+4	17.7 + 14.2							
1 4— 15	13+11	10.6 + 7.5							
16—17	3+ 4	4.9 + 3.0							
18—19	6+ 2	1.7+1.0							
≥20	2	1.0							

№ 136. $a = 18^{h}0^{m}$; $B = +20^{o}$. N = 2121; $w_{1} = 30$; $w_{2} = 30$. $s_{1} = 5$; $\delta_{1} = 5.8$; $s_{2} = 2$; $\delta_{2} = 21.5$

-	-6 ·	— 5	4	-3	<u>2</u>	1	0 -	+1	+2	+3	+4	+5	+6	$+\alpha$
-6	9	11	14	14	14	14	12	9	15	14	7	13	8	' ~
-5	5	7	5	11	16	13	14	13	14	15	13	11	8	
-4	5	7	15	12	11	14	11	20	21	16	11	14	16	
-3	18	10	8	11	7	9	14	16	23	11	16	15	15	
-2	12	21	18	8	12	11	17	15	18	18	13	16	7	
-1	14	16	10	15	10	10	16	10	10	21	20	10	14	
0	10	11	17	14	12	19	23	8	10	11	9	12	18	
+1	9	9	18	14	17	13	9	12	11	15	23	16	16	i
+2	17	15	15	14	15	14	9	13	10	17	14	12	16	
+3	15	11	12	11	14	6	14	9	8	17	20	14	14	ĺ
+4	9	7	7	18	16	10	15	7	15	8	6	7	8	
+5	11	8	9	10	8	12	19	8	13	13	11	14	7	
+6	10	6	12	10	13	12	12	14	9	12	10	8	8	
+	δ													•

r	obs.	n(r) theor.					
0-4		1.0					
5— 6	3+3	1.5+ 3.3					
7— 8	10+13	6.0+9.2					
9—10	12+15	12.6+16.1					
11-12	16+14	18.0+19.2					
13 - 14	10+23	18.5 + 16.3					
15—16	14+12	13.8+10.9					
2	•	8.1 + 5.6					
		3.8+2.5					
21—22	3+0	1.4+0.8					
\geqslant 23	3	0 5					
		j					

No 137. $a = 18^{h}8^{m}$; $B = +18^{0}$. N = 1775; $w_{1} = 9$; $w_{2} = 440$. $s_{1} = 18$; $\delta_{1} = 5.2$; $s_{2} = 12$; $\delta_{2} = 17.2$

						_			_				
	<u>-6</u> -	<u>-5</u>	-4-	3	-2	-1	0	+1	+2	+ 3	+4	+5	+6
-6	9	9	14	8	11	12	23	15	8	14	8	9	11
5	5	6	8	11	12	19	11	10	9	12	14	4	9
4	17	14	12	13	15	9	8	15	11	11	8	14	12
3	9	10	12	15	11	4	2	10	11	11	12	12	17
2	9	5	4	6	4	6	10	7	11	16	17	18	12
-1	8	12	. 8	4	6	8	9	7	6	10	20	13	10
0	8	10	4	7	7	4	10	4	7	9	17	22	12
1	13	15	12		12						8	18	<i>15</i>
2	9	9	9	11	4	9	14	14	7	13	13	20	<i>15</i>
3	10	14	14	16	9	10	16	7	9	11	10	10	9
4	9	9	10	8	12	11	8	6	15	10	14	15	8
- 5	12	12	11	10	- 11	9	8	12	15	11	7	15	7
6	11	6	8	15	15	8	6	16	9	8	7	5	6
⊦6 	11 -δ	6	8	15	15	8	6	16	9	8	7	5	6

r		n(r)					
	obs.	theor.					
0— 1	0	0.04					
2— 3	1+0	0.3 + 0.9					
4- 5	9+4	2.5 + 5.1					
6 7	10+11	8.8+13.2					
8- 9	18+23	17.3+20.0					
10—11	15+17	21.2+20.0					
12—13	17+ 5	17.6+14.1					
14—15	10+13	10.6 + 7.4					
16—17	5+4	4.8+ 3.0					
18—19	2+1	1.7 + 1.0					
20—21	2 + 0	0.6+0.3					
\gg 22	2	0.3					
Ī							

№ 138. $a = 18^{h}16^{m}$; $B = +16^{0}$. N = 2129; $w_{1} = 22$; $w_{2} = 10^{7}$. $s_{1} = 6$; $\delta_{1} = 6.7$; $s_{2} = 11$; $\delta_{2} = 21.4$

	6-	<u>-5</u>	<u>-4</u>	<u>-3</u>	_2	1	0 -	+1 -	+2-	+ 3 ·	+4	+ 5 -	+6	$+\alpha$
-6	7	12	5	15	14	8	10	13	19	9	10	7	12	"
— 5	5	9	11	18	7	9	12	9	10	12	12	10	12	
4	14	11	11	11	14	10	11	8	7	14	25	10	13	
-3	12	16	17	11	14	11	16	9	14	14	19	12	6	
_2	20	16	15	8	12	15	7	5	13	22	<i>15</i>	20	11	
-1	16	12	14	8	10	13	8	8	12	16	12	11	19	
0	20	11	16	7	13	12	7	9	16	10	18	21	17	
+1	18	15	8	12	9	10	5	10	11	15	15	20	11	
+2	17	13	25	12	11	12	16	10	12	10	21	12	11	
+3	6	10	19	11	14	13	14	15	14	11	22	25	15	
+4	13	8	10	9	14	14	18	19	14	14	22	7	13	
+5	12	8	10	10	11	16	15	11	7	8	15	13	9	
+6	7	7	8	11	11	11	13	16	10	13	15	16	19	

r		n(r) theor.
0— 4	0	1.0
5— 6	4+2	1.5+ 3.3
7 — 8	11+11	5.9+ 9.1
9—10	9+17	12.5 + 16.0
11—12	21+19	18.0 + 19.2
13—14	12+15	18.6 + 16.4
15—16	12+11	13.8+11.0
17—18	3+4	8.2+ 5.7
19—20	6+4	3 .8+ 2.5
21—22	2+ 3	1.5+ 0.8
23 - 24	0	0.3+- 0.1
\geqslant 25	3	0.05

№ 139. $a = 18^{h}24^{m}$; $B = +15^{o}$. N = 979; $w_{1} = 1200$; $w_{2} = 2400$. $s_{1} = 36$; $\delta_{1} = 2.6$; $s_{2} = -$; $\delta_{2} = -$

_	-6 -	_5·	<u>-4</u>	<u>-3</u> ·	_2	<u>-1</u>	0	+1 -	+2	+3 -	 4 -	+ 5 ·	+6	. +α
6	2	6	8	5	3	13	4	11	5	2	9	10	9	
— 5	7	5	10	4	2	2	5	10	8	12	8	10	4	
-4	7	2	8	7	3	1	7	6	12	7	9	8	10	
-3	4	7	6	8	11	2	5	3	5	10	9	9	3	
-2	12	6	2	3	4	1	4	2	6	1	4	7	7	l
-1	6	10	3	3	3	1	5	5	5	4	9	5	17	
0	10	7	7	2	3	5	5	3	8	10	4	9	7	
+1	13	3	4	5	4	4	2	2	4	5	5	4	5	i
+2	5	4	4	4	3	5	2	6	4	9	9	4	6	ĺ
+3	5	4	4	7	5	2	2	2	4	3	5	4	7	:
+4	3	6	4	8	2	2	7	6	7	8	6	4	4	
+5	5	3	3	4	8	4	2	5	7	8	3	4	8	
+6	9	11	7	11	8	7	2	9	8	7	10	14	8	
l								-						•

l	n	(r)
r		theor.
0	0	0.6
1	4	3.0
2	19	8.8
3	17	16.8
4	29	24.1
5	23	28.0
6	11	27.2
7	19	22.6
. 8	15	16.4
9	11	10.5
10	10	6.1
11	4	3.2
12	3	1.6
13	2	0.7
≥14	2	0.6

No. 140. $\alpha = 18^{\rm h}32^{\rm m}$; $B = +13^{\rm o}$. N = 2006; $w_1 = 10^{\rm o}$; $w_2 = 10^{\rm o}$. $s_1 = 11$; $\delta_1 = 3.9$; $s_2 = 20$; $\delta_2 = 20.0$

_	-6-	- 5 -	-4 -	-3	_2 -	-1	0 -	+1 -	+2-	+3 -	+4 -	+ 5 -	+6	$+\alpha$	r		n(r)
-6	19	12	16	10	26	12	12	16	8	20	10	8	5	۱۵	0 1	obs.	
— 5	21	16	10	18	11	19	2 0	20	9	14	5	8	2		0-1		0.01 0.1+ 0.3
4	15	13	17	26	17	13	15	16	11	14	10	12	7			·	0.1 + 0.5 1.0 + 2.3
3	24	17	21	25	15	15	12	11	14	18	20	15	14			•	4.6 + 7.8
_2	19	13	17	17	14	17	12	11	17	13	15	13	12			•	11.6+15.3
-1	9	20	14	6	12	15	5	12	15	10	12	18	22		10—11	18+16	18.2 + 19.6
0					10							18			12—13	20+10	19.4 + 17.7
+1			10				7						7			•	14.9 + 11.9
+2					12								•			,	8.8 + 6.2
+3	ļ		5			2						12		:		,	4.1 + 2.6
•			13		12					8	6		7			,	1.5 + 0.8 0.5 + 0.2
+4	l											9	·		$\geqslant 24$	4	0.5 + 0.2
+5					10				7		8	6	5			_	0.1
+6	13	8	11	11	19	8	10	7	10	4	3	4	8				
+	δ																

№ 141. $a = 18^{h}40^{m}$; $B = +11^{o}$. $s_1 = 10.0$; $\delta_1 = 10.4$;

I.
$$[N = 1142 -.]$$

_	-6	3	-3	5		4		3		2		1	
0	4	4	3	8	5	9	2	6	9	11	6	6	9
-6	6	3	2	6	8	6	6	9	3	. 9	12	7	6
_	2	4	5	8	3	5	5	4	6	5	5	12	6
— 5	4	1	6	2	8	7	5	1	6	3	7	5	12
4	5	5	6	7	8	4	4	4	7	5	11	8	9
-4	8	5	6	6	3	12	8	4	8	7	13	7	8
	4	9	5	4	5	6	5	7	5	6	10	8	9
-3	3	8	11	12	10	9	8	8	9	9	5	5	9
9	5	3	6	8	8	9	13	7	5	9	6	9	8
-2	6	8	4	6	5	11	6	9	9	10	2	5	12
	3	6	6	7	5	7	3	11	6	9	5	8	14
1	8	10	8	5	13	5	1	7	11	11	7	4	10
0	3	8	7	7	12	10	8	4	10	7	4	8	6

r		(r) theor.
0	0	0.3
1	3	1.4
2	5	4.5
3	11	10.3
4	15	17.0
5	26	23.2
6	26	25.9
7	16	25.2
8	24	21.3
9	18	16.0
10	7	10.8
11	7	6.6
12	7	3.8
13	3	1.9
≥14	1	2.0
I		

III. [N = 1152; $w_1 = 37$; $w_2 = 120$. $s_1 = 2.8$; $\delta_1 = 13.4$; $s_2 = 2.5$; $\delta_2 = 53.6$]

	6	;		5		4		3		2		1		0
0	7	4	6	12	17	14	12	6	9	7	4	4	5	
	9	5	9	11	13	8	13	6	8	12	10	6	9	ŀ
+1	5	5	8	9	8	5	7	6	3	10	5	5	9	
	3	4	4	10	9	10	9	11	9	8	7	6	9	l
+2	5	7	4	7	7	13	9	9	5	13	7	7	8	
	4	3	8	2	7	5	4	9	13	12	9	11	10	
+3	3	9	6	10	12	3	10	4	<i>15</i>	10	5	8	4	
	6	7	4	10	7	8	4	8	6	7	10	11	5	
+4	4	2	5	9	10	8	6	7	3	3	7	0	9	İ
ا ـ ،	8	8	5	10	5	6	5	10	5	4	6	4	8	
+5	4	6	3	4	6	2	3	5	5	7	8	10	3	
	4	8	7	4	8	5	8	8	3	3	5	4	10	
+6	2	8	4	6	8	2	6	4	7	7	5	7	6	
+	8													

00.0	J	
r		(r) $ theor. $
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ > 16 \end{array} $	1 0 5 16 22 22 17 20 17 15 4 5 5 1	0.2 1.2 4.1 9.8 16.1 22.3 25.5 25.3 21.8 16.7 11.5 7.2 2.1 1.1 0.5 0.5

N = 4430; $w_1 = 50000$; $w_2 = 10^6$. $s_2 = 7.5$; $\delta_2 = 48.9$

II.
$$[N=1107 \; ; \; w_1=30 \; ; \; w_2=380.$$

 $s_1=2.2 \; ; \; \delta_1=9.0 \; ; \; s_2=3.2 \; ; \; \delta_2=47.7]$

0)	+	1	+	2	+	3	+	4	+:	5	+6	3	$+\alpha$
-6	7	5	2	4	10	5	4	6	6	5	5	2	2	
_0	5	5	4	5	4	3	6	8	4	5	2	2	4	i
5	8	9	9	10	9	7	6	3	6	5	2	3	3	·
-0	9	5	10	7	3	5	3	6	3	6	7	2	4	
-4	9	4	9	10	5	10	5	10	5	4	7	2	4	
-	13	3	13	2	10	7	11	6	4	1	.7	- 5	5	
_3	8	7	11	4	7	6	9	10	7	12	9	1	6	
Ť	6	8	<i>15</i>	7	12	7	5	10	7	8	6	6	3	
-2	3	11	7	6	4	8	9	10	5	5	8	11	3	
	5	10	9	7	8	9	7	14	9	7	6	5	3 ,	
1	3	2	7	7	7	6	7	9	5	9	6	7	4	
	12	5	5	9	9	18	3	10	9	7	4	6	6	
0	9	13	7	15	10	5	9	4	6	6	8	3	3	

r	$\begin{vmatrix} n \\ obs. \end{vmatrix}$	(r) theor.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ≥16	0 2 10 16 16 25 21 24 9 19 13 4 3 3	0.3 1.6 5.2 11.6 18.6 24.4 26.6 24.8 20.4 14.9 9.7 5.8 3.2 1.5 0.7 0.3 0.2

IV.
$$[N=1029\,;\;w_1=180\,;\;w_2=300.$$
 $s_1=5.0\,;\;\delta_1=9.4\,;\;s_2=1.8\,;\;\delta_2=44.4]$

0)	+	1	+	2	+:	3	+4	4	+:	5	+(5	
0	12	5	10	10	10	6	9	11	6	4	8	6	5	
	7	4	5	11	15	5	3	5	· 5 ·	6	6	2	4	
+1	5	14	5	4	4	13	8	7	5	8	6	4	2	
	8	4	5	6	10	5	5	9	14	5	6	3	4	
 2	8	8	9	4	5	2	8	1	8	7	9	3	4	
	12	10	9	6	9	6	7	6	6	3	5	2	5	l
⊹3	9	4	9	4	10	7	9	3	7	7	4	3	3	l
	10	8	10	7	8	11	3	6	9	4	7	1	3	
+4	11	9	6	12	8	7	2	10	3	3	7	7	1	
	8	6	10	6	2	4	5	10	1	7	3	6	5	
+ 5	9	6	3	10	2	5	8	4	0	3	2	4	1	
	2	5	8	6	6	4	5	7	4	5	5	8	4	
+6	4	6	6	8	4	4	6	3	5	6	3	7	5	
+	- <i>8</i>													j

r		(r)
·	obs.	theor.
0	1	0.4
1	5	2.4
2	9	7.2
3	16	14.5
4	23	21.9
5	25	26.9
6	24	27.4
7	15	23.8
8	16	18.0
9	12	12.3
10	12	7.5
11	4	4.1
12	3	2.1
13	1	1.0
14	2	0.4
\geqslant 15	1	0.3

 $N = 3426 \; ; \; w_1 = 10^{14} \; ; \; w_2 = 10^{14}.$ $s_2 = 34 \; ; \; \delta_2 = 30.8$

r		n(r) theor.
16-17 $18-19$ $20-21$ $22-23$ $24-25$	5+5 11+7 7+9 5+8 10+9 8+7 10+13 3+2 4+8 6+6	3.4 + 2.3 $1.6 + 1.1$

№ 143. $\alpha = 18^{h}56^{m}$; $B = +8^{o}$. $s_{1} = 7.2$; $\delta_{1} = 9.7$;

I. $[N=1194; w_1=4; w_2=12.$

$$s_1 = 2.0$$
; $\delta_1 = 10.5$; $s_2 = 5.5$; $\delta_2 = 44.7$]

_	6	3	5)	<u></u> 4	<u>L</u>	;	3		2	·]	l .	(
0	5	2	5	7	3	4	4	9	8	3	4	6	4
-6	6	8	4	5	3	3	8	2	4	7	12	8	11
5	6	5	5	8	4	6	10	12	8	10	11	8	10
— 5	7	7	5	4	2	5	3	5	11	12	9	6	5
	6	7	11	4	10	13	8	9	10	10	6	10	13
-4	5	7	6	9	8	9	6	7	4	6	7	<i>11</i>	11
-3	12	14	13	6	5	3	6	4	9	5	6	9	11
-5	11	10	8	5	10	6	5	7	12	7	6	6	12
2	8	12	6	7	10	6	6	7	10	9	8	8	6
2	6	8	3	10	8	6	9	5	7	1	6	13	4
	11	5	10	5	15	7	6	7	10	9	2	1	5
1	6	7	6	9	5	6	7	7	6	4	3	2	3
0	7	10	10	6	7	7	8	9	5	5	7	3	7

r	n(r)							
_	obs.	theor.						
0	0	0.2						
1	2	1.1						
2	5	3.6						
3	10	8.6						
4	13	15.0						
5	21	21.2						
6	29	24.9						
7	23	25.3						
8	16	22.4						
9	12	17.5						
10	16	12.4						
. 11	9	8.0						
12	7	4.7						
13	4	2.5						
14	1	1.3						
\geqslant 15	1	1.0						
	-							

III. $[N=1262; w_1=3; w_2=37.$

$$s_1 = -$$
; $\delta_1 = -$; $s_2 = 1.2$; $\delta_2 = 56.9$]

		3	{	5	-4	Ļ		3		2		1	
0	8	13	12	6	9	5	10	7	5	7	5	10	12
	6	6	8	7	7	5	2	9	8	5	3	2	5
+1	6	14	9	7	6	8	5	9	9	5	8	4	12
1.9	9	7	8	8	10	9	11	6	3	10	7	7	8
+2	4	6	7	10	13	9	6	6	9	5	5	2	6
1.9	11	9	6	10	9	3	10	4	3	5	6	13	5
+3	4	6	8	4	12	9	8	5	6	4	3	9	6
1.4	6	6	7	9	12	7	6	7	18	10	3	13	15
+ *	5	8	6	7	9	12	11	1 2	14	7	6	8	6
1.5	6	6	6	8	13	4	11	10	14	8	12	8	9
40	3	5	5	4	8	10	7	4	13	7	11	8	8
1 @	4	5	4	4	11	4	6	9	8	6	8	8	7
+6	8	2	4	6	5	4	9	5	8	7	7	12	10
+	-δ												

	n	(r)
r		theor.
0	0	0.2
1	0	0.8
2	4	2.7
3	7	6.6
4	15	12.7
5	19	18.8
6	27	23.2
7	19	24.7
8	23	23.3
9	18	19.1
10	11	14.4
11	6	9.6
12	9	6.2
13	6	3.5
14	3	1.9
15	1	0.9
≽ 16	1	0.7

N = 4437; $w_1 = 200$; $w_2 = 10^6$. $s_2 = 11.2$; $\delta_2 = 46.2$

II.
$$[N=929~;~w_1=70~;~w_2=10.$$
 $s_1=5.2~;~\delta_1=9.4~;~s_2=1.5~;~\delta_2=44.0]$

0		+	1	+	2	+	3	+	4	+:	5	+	6	$+\alpha$	r
2	7	8	5	9	7	7	5	8	3	3	2	1	1	•	0
6	10	4	8	6	6	5	4	3	3	3	1	3	2		1
_	6	7	6	2	4	6	3	2	2	5	6	6	2		2
— 5	7	6	7	3	6	2	3	4	2	4	2	3	9		3
	3	9	6	4	5	2	5	5	2	4	3	6	5	1.	4
-4	10	6	10	7	7	8	7	7	8	6	4	5	2		5
	6	3	7	5	8	6	7	5	7	1	6	6	4		· 6
-3	6	6	10	8	9	6	12	10	11	10	0	9	6		8
	4	5	7	8	3	7	12	11	7	6	8	5	10		9
— 2	8	3	6	10	8	4	5	6	7	10	5	3	6		10
	5	4	6	6	3	6	6	9	6	4	4	4	3		11
1	4	6	4	3	5	7	5	6	5	6	4	3	4		≥ 12
	11	2	7	2	4	4	7	6	7	4	3	5	6		
0														J	ļ

	n(r)							
r	obs.	theor.						
0	1	0.8						
1	4	3.8						
2	14	10.5						
3	21	19.2						
4	22	26.2						
5	20	29.0						
6	35	26.6						
7	21	21.0						
8	11	14.4						
9	6	8.7						
10	- 9	4.9						
11	3	2.5						
\geqslant 12	2	1.6						
		• .						

IV. $[N = 1052; w_1 = -; w_2 = 380.$ $s_1 = -; \delta_1 = -; s_2 = 3.0; \delta_2 = 46.0]$

$$s_1 = -$$
; $\delta_1 = -$; $s_2 = 3.0$; $\delta_2 = 46.0$]

0		+	1	+	2	. +	3	+	4	+	5	+6	3
0	7	4	4	5	3	6	6	4	8	6	7	5	5
	8	4	4	4	6	6	8	13	9	6	8	8	3
+1	6	5.	4	9	6	5	6	7	9	9	8	6	6
Lo	4	16	7	11	4	9	10	9	6	3	5	5	5
+2	8	5	4	11	11	11	11	6	6	5	7	4	0
12	7	5	5	3	6	9	6	6	5	11	3	6	7
+3	4	6	7	9	2	9	6	7	1	8	4	4	3
+4	5	14	4	7	5	6	7	6	3	8	3	3	5
+*	6	5	6	11	6	3	4	6	7	9	7	4	5
1 5	10	5	8	11	10	1	6	4	9	5	8	4	2
+5	11	7	13	9	4	5	6	8	4	4	6	3	2
+6	12	16	6	3	5	7	5	5	5	11	5	7	4
70	6	7	8	4	4	4	3	2	4	8	5	6	5
+	- 8												

r	obs.	(r) theor.
0	1	0.4
1	2	2.1
2	4	6.5
3	13	13.6
4	27	20.7
5	28	26.2
6	32	27.4
7	17	24.1
8	14	18.8
9	12	13.2
10	3	8.1
11	10	4.6
12	1	2.4
13	2	1.2
14	1	0.5
\geqslant 15	2	0.3

No. 144. $a = 19^{\text{h}}4^{\text{m}}$; $B = +6^{\circ}$. N = 3059; $w_1 = 10^{2\text{J}}$; $w_2 = 10^{14}$. $s_1 = 24$; $s_1 = 8.2$; $s_2 = 22$; $s_2 = 30.0$

-	-6-	- 5	-4	<u>3</u>	—2	-1	0	+1	+2	+3	+4	+ 5	+6	$+\alpha$	r	
6	9	8	16	20	20	16	12	19	17	22	11	7	8	"	0-	1
_5	10	23	23	19	15	16	24	19	14	18	16	5	7		3—	-,
-4	12	15	28	15	16	22	22	23	15	16	13	15	13		5—	1
-3	11	20	22	<i>36</i>	15	15	9	9	12	18	23	17	14		7— 8 9—10	ı
-2	22	23	25	24	26	16	12	13	13	18	10	12	18		11—12	1
-1	21	17	16	15	8	11	15	16	18	8	14	14	14		13—14	1
0	27	22	15	17	10	12	6	21	19	8	10	14	7		15—16 17—18	1
+1	23	22	15	23	18	7	16	15	19	17	13	19	14		19—20	
+2	18	15	24	19	11	17	15	17	12	2 2	15	16	10		21—22	1
+3	ŀ														$23-24 \\ 25-26$	
+4													5		2 7—2 8	- 1
+5													Ŭ		\geqslant 29	
•					26								3			
\ \ \ \ \ \	L				~~		~~		-						<u></u>	

r .		$n(r) \ \ theor.$
0- 2	0	0.001
3— 4	1+0	0.01
5- 6	3+ 2	0.05 + 0.1
7— 8	4+5	0.3 + 0.6
910	3+5	1.4+2.5
11—12	5+8	
13—14	6+8	8.4 + 10.7
15—16	16+12	13.1+14.7
17—18	10+10	15.9 + 16.0
19—20	8+ 3	15.0 + 13.7
21-22	4+10	11.9 + 9.7
23-24	10+ 5	7.5 + 5.7
		4.1 + 2.9
27—28	6+4	2.0+1.3
≥29	13	1.5
		1

No. 145. $a=19^{h}12^{m}$; $B=+5^{0}$. N=1571; $w_{1}=160\,000$; $w_{2}=240\,000$. $s_{1}=17$; $\delta_{1}=5.3$; $s_{2}=9$; $\delta_{2}=18.0$

_	-6 -	- 5 -	-4 -	<u>-3</u>	_2-	-1	0 -	+1 -	 - 2-	 - 3 -	 4 -	+ 5 ·	+6	. +α
-6	4	8	16	14	8	11	12	8	3	4	8	3	4	' ~
5	5	8	19	10	13	6	4	9	6	9	9	5	6	İ
-4	14	13	6	13	5	8	7	6	7	5	4	4	7	
-3	13	10	5	11	14	4	8	7	6	5	4	11	10	
-2	9	10	5	7	8	5	5	6	11	8	5	7	8	
-1	11	12	5	7	4	7	6	11	11	1	5	7	4	l
0	9	6	6	9	11	8	7	7	8	10	7	11	9	
+1	11	12	11	4	9	9	8	13	9	5	21	10	9	İ
+2	11	10	10	14	5	11	12	15	9	4	8	13	12	
+3	10	17	14	15	6	12	16	11	5	17	15	9	12	
+4	17	6	11	13	7	20	19	9	5	8	12	9	12	
+5	9	6	8	9	10	14	14	19	10	12	17	22	8	
+6	7	3	5	7	19	18	10	12	8	11	10	9	10	
+	-δ													-

r		(r) theor.
0	0	0.01
1	1	0.1
2	0	0.6
3	3	2.2
4	12	5.0
5	17	9.1
6	13	14.2
7	15	18.9
8	18	21.5
9	18	22.4
10	14	20.6
11	16	17.4
12	11	13.4
13	7	9.5
14	7	6.3
15	3	3.9
$ \begin{array}{c c} 16 \\ 17 \\ 18 \\ 19 \\ \geqslant 20 \end{array} $	2 4 1 4 3	2.2 1.2 0.6 0.3 0.3

No. 146. $\alpha = 19^{\rm h}20^{\rm m}$; $B = +3^{\rm o}$. N = 3072; $w_1 = 10^{54}$; $w_2 = 10^{46}$. $s_1 = 30$; $s_1 = 6.6$; $s_2 = 44$; $s_2 = 29.2$

-	-6 -	- 5 -	-4 -	<u>-3</u> ·	_2 -	-1	0 -	+1 -	+2	+3-	 4 -	+5	+6
— 6	4	4	11	15	8	4	3	3	11	12	9	6	10
— 5	6	6	6	7	4	10	9	6	12	13	9	15	2
-4	8	8	13	13	8	7	13	16	14	10	21	10	5
-3	14	19	28	15	2 8	22	15	11	10	20	16	9	8
-2	16	16	20	23	24	19	21	22	12	4	20	15	11
-1	8	12	21	23	11	23	13	13	25	8	7	11	14
0	15	16	20	17	15	17	11	16	30	15	18	16	10
+1	15	17	10	20	<i>32</i>	24	23	24	24	18	29	22	20
+2	17	26	19	26	29	3 0	23	24	24	20	26	23	19
+3	12	18	<i>34</i>	26	25	26	2 8	28	<i>31</i>	26	<i>33</i>	20	21
+4	9	24	<i>36</i>	<i>32</i>	29	27	<i>32</i>	<i>3</i> 7	<i>34</i>	<i>35</i>	<i>32</i>	24	31
+5	17	18	17	<i>33</i>	<i>36</i>	29	23	28	25	31	44	19	11
+6	11	11	19	15	19	27	26	22	22	32	25	14	10

r		n(r) theor.
0 1	0	
2-3	1+2	0.001
4 — 5	5+1	0.02 + 0.05
6- 7	•	0.1+0.03
8- 9	•	0.1 + 0.3 0.6 + 1.3
10—11	•	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
10-11 $12-13$	•	5.6 + 8.0
12—15 14—15	•	10.3 + 12.8
14—15 16—17	•	10.3 + 12.0 14.4 + 15.7
	•	ı ·
18—19	•	16.0 + 15.1
20 - 21	•	13.9 + 12.2
22—23	•	10.0 + 7.9
24—25	•	5.9+ 4.4
26 - 27	•	3.1+2.2
28—29	5+ 4	1 ' 1
30—31	2+3	
\geqslant 32	14	0.3

No 147. $a = 19^{h}28^{m}$; $B = +1^{0}$. N = 3489; $w_{1} = 10^{59}$; $w_{2} = 10^{38}$. $s_{1} = 57$; $\delta_{1} = 11.4$; $s_{2} = 42$; $\delta_{2} = 33.1$

	-6 -	- 5	-4	—3 ,	-2	-1	0	+1	+2	+3	+4	+5	+6		r		n(r)
6	9	14	34	23	15	20	21	14	10	19	17	6	6	$+\alpha$			theor.
5							٠,					19	10		0-4	0	0.005
		•													5— 6	•	0.01 + 0.04
-4	10	9	11	21	21	47	<i>32</i>	36	<i>30</i>	2 8	24	22	16		1	•	0.1 + 0.3 0.5 + 0.9
-3	7	9	12	18	3 0	<i>3</i> 7	42	27	29	32	26	25	15				0.5 + 0.9 1.6 + 2.9
-2	13	13	13	14	29	28	28	17	20	4 2	26	<i>32</i>	23			•	4.4 + 6.1
-1	10	9	6	8	8	25	20	32	23	3 3	41	25	25		3		8.4 + 10.7
O,	15	15	8	8	7	26	21	19	27	25	38	29	27			•	12.7 + 13.9 $14.9 + 15.0$
+1	21	17	14	8	6	13	15	14	13	43	25	18	24		21—22	10+3	14.5 + 13.3
+2	19	25	38	21	19	26	24	8	13	11	22	22	21) 			11.9 + 10.0 7.9 + 6.2
+3	20	27	3 9	<i>34</i>	27	43	28	24	13	20	14	18	18		1		$4.6+\ 3.3$
+4	28	36	33	28	31	<i>3</i> 7	40	28	18	19	20	15	15		29—30	•	2.3 + 1.6
+5	20	29	21	31	15	25	3 3	29	17	2 0	16	5	19			•	1.0 + 0.6 0.4 + 0.2
+6	20	15	12	13	19	15	15	20	21	19	27	14	10		≥35	14	0.3
	$+\delta$						-										

№ 148. $\alpha = 19^{\text{h}}36^{\text{m}}$; $B = 0^{\text{o}}$. N = 3358; $w_1 = 10^{62}$; $w_2 = 10^{68}$. $s_1 = 44$; $\delta_1 = 9.5$; $s_2 = 32$; $\delta_2 = 34.2$

_	-6 -	-5	_4	<u>-3</u>	<u>-2</u>	<u>—1</u>	0	+1	+2	+3	+ 4	+ 5 ·	+6	$+\alpha$	r $obs.$ $theor.$
-6	6	8	5	9	15	19	24	22	21	25	42	20	15		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
5	11	16	16	28	22	22	<i>31</i>	22	21	29	45	28	7	٠	4-5 0+3 0.003+0.012
-4	13	22	22	22	4 6	43	24	<i>31</i>	33	20	20	21	15	, .	$\begin{vmatrix} 6-7 \\ 8-9 \end{vmatrix}$ $\begin{vmatrix} 2+4 \\ 3+3 \end{vmatrix}$ $\begin{vmatrix} 0.04+0.1 \\ 0.3+0.5 \end{vmatrix}$
-3	22	19	23	<i>36</i>	26	23	10	21	21	21	24	28	17		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2	22	27	23	32	26	22	10	22	12	11	10	13	20		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
-1	17	3 0	19	23	21	13	21	21	18	12	9	11	16		18-19 4+ 7 14.4+15.2
0	27	<i>33</i>	26	15	22	15	17	18	17	<i>36</i>	14	12	10		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
+1	8	25	<i>37</i>	<i>39</i>	25	19	5	16	23	20	18	19	11		$ \begin{vmatrix} 24-25 & 6+6 & 9.3+7.3 \\ 26-27 & 4+2 & 5.7+4.1 \end{vmatrix} $
+2	20	21	34	40	32	13	13	.15	17	18	13	24	14		$\begin{vmatrix} 28-29 & 5+1 & 2.9+2.0 \\ 30-31 & 3+3 & 1.3+0.8 \end{vmatrix}$
+3	15	23	<i>30</i>	41	41	14	19	24	25	12	15	10	12		$32-33 \ 3+3 \ 0.5+0.3$
+4	7	11	25	22	33	4 6	<i>32</i>	30	15	12	13	11	8		$\begin{vmatrix} 34 - 35 & 1 + 0 & 0.2 + 0.1 \\ \geqslant 36 & 12 & 0.1 \end{vmatrix}$
+5	3	16	19	23	28	2 8	25	20	14	9	3	10	5		e de la companya de l
+6	11	12	11	15	26	<i>31</i>	24	11	6	11	8	7	7		

No 149. $\alpha = 19^{\rm h}44^{\rm m}$; $B = -2^{\rm o}$. N = 3232; $w_1 = 10^{11}$; $w_2 = 10^{11}$. $s_1 = 46$; $\delta_1 = 11.4$; $s_2 = 13$; $\delta_2 = 34.3$

_	-6 -	- 5 ·	4	-3	-2	1	0	+1	+2	+3	+4	+5	+6	1	r		n(r)
-6	30	28	14	24	29	18	23	18	26	24	26	23	15	$+\alpha$			theor.
- 5															0-2	•	- 0.01
						22									.	$1+0 \\ 1+1$	
-3						15								•	•	•	0.2 + 0.4
															. :	•	0.8+1.5
-2	14	31	41	22	11	16	19	13	12	11	18	23	36			•	2.6 + 4.2
1	15	22	44	29	12	11	13	16	14	21	18	14	17			•	6.2 + 8.4 $10.8 + 12.9$
0	16	15	30	18	15	9	13	17	22	18	24	10	11			• 4	14.5 + 15.3
+1	20	13	15	18	17	12	12	16	23	16	16	18	15		19—20	6+4	15.4 + 14.7
+2	22	18	44	22	23	20	16	18	23	24	19	12	14			•	13.5 + 11.7
+3						19									3 i		9.8 + 7.8 5.9 + 4.4
+4						23										, ,	3.1+2.1
•																	1.4 + 0.9
+5	12	10	14	13	26	22	27	21	24	10	10	10	3				0.5 + 0.3
+6	8	6	9	16	20	16	12	13	14	19	14	10	5		≥33	6	0.3
	$+\delta$													•			

No. 150. $a = 19^{\rm h}52^{\rm m}; \ B = -3^{\rm o}. \ N = 2406; \ w_1 = 10^7; \ w_2 = 10^7.$ $s_1 = 13; \ \delta_1 = 6.8; \ s_2 = 14; \ \delta_2 = 24.1$

-	-6-	- 5	-4	-3	<u>-2</u>	-1	0	+1	+2	+3	+4	+ 5	+6	$+\alpha$	r		n(r)
6	21	19	21	19	15	17	20	12	16	14	21	8	13	+a		obs.	theor.
— 5												•	7		0 1	-	
													·			i ·	0.06
-4	17	15	31	16	17	23	17	13	23	24	19	14	10		4— 5	1+ 3	0.2+0.5
— 3	22	18	29	17	17	18	12	13	14	16	13	10	7		6— 7	2+ 9	1.3+2.6
-2	23	27	19	18	9	11	16	11	12	12	15	7	10		8— 9	9+7	4.7+ 7.4
—1	12	14	18	8	7	8	11	11	10	9	12	18	15		10—11	10+11	10.4 + 13.6
0	R	Q	15	ß	7	5	12	8	7	10	17	22	18		12—13	15+12	16.2 + 18.1
															14—15	15+11	18.0 + 17.1
+1	14	11	15	14	11	8	7	11	13	9	18	12	5		16—17	7+14	15.2 + 12.7
+2	9	14	8	3	9	5	14	11	12	20	15	16	10		18—19	10+ 5	10.0 + 7.5
+3	15	13	17	7	12	10	9	10	22	12	4	18	19		20—21	3+8	5.4+3.6
+4	13	17	12	14	12	9	17	21	13	17	18	11	13		22—23	6+3	2.4 + 1.5
+5	13	14	13	12	14	18	21	17	25	13	14	8	7				0.9+0.5
+6	11	14	21	22	20:	17	15	22	28	12	10	10	8		≥26	4	0.6
+	8													i	I		

No. 151. $a = 20^{h}0^{m}$; $B = -5^{0}$. N = 930; $w_{1} = 6000$; $w_{2} = 700\ 000$. $s_{1} = 11$; $\delta_{1} = 1.6$; $s_{2} = 13$; $\delta_{2} = 12.2$

_	-6 -	-5 -	-4 -	- 3 -	-2 -	-1	0 -	 -1 -	 2 -	+3 -	 4 -	 -5 -	+6	$+\alpha$
— 6	2	4	6	6	4	4	6	5	5	3	5	5	4	" "
— 5	5	4	3	3	9	3	14	3	5	3	2	4	3	
-4	1	7	6	8	4	3	2	5	5	6	13	4	5	
3	4	3	7	1	5	6	6	4	4	7	5	8	6	
_2	6	3	1	5	7	6	2	1	6	5	4	1	5	
-1	6	6	4	6	3	2	3	3	4	6	6	6	2	
0	10	7	1	1	1	6	2	1	4	4	6	7	6	
+1	3	3	6	5	5	2	1	3	5	11	5	7	4	
+2	8	5	7	3	4	1	2	4	1	3	4	8	11	
+3	11	14	7	7	8	6	4	4	2	5	6	11	7	
+4	5	16	1 3	12	6	5	4	5	6	6	6	7	5	
+5	7	12	11	8	8	11	7	8	4	1	7	7	7	
+6	6	8	10	<i>15</i>	<i>13</i>	9	11	3	5	5	7	5	6	
-1	δ			-										

	n	(r)
r	obs.	theor.
0	0	0.6
1	13	3.8
2	10	10.3
3	19	19.1
4	24	26.2
5	27	29.0
6	29	26.6
7	18	21.0
8	9	14.4
9	2	8.7
10	2	4.9
11	7	2.4
12	2	1.1
13	3	0.5
\geqslant 14	4	0.4

№ 152. $a = 20^{\text{h}8^{\text{m}}}$; $B = -6^{\circ}$. N = 1607; $w_1 = 40$; $w_2 = 50$. $s_1 = -$; $s_1 = -$; $s_2 = 2$; $s_2 = 17.5$

-	-6-	-5 -	_4 -	<u>-3</u> ·	_2 -	-1	0 -	+1 -	+2 -	+3 -	+ 4·	+ 5 -	+6	. 4
6	4	6	4	19	16	10	6	10	9	12	10	12	6	
5	6	4	5	13	11	14	12	14	13	16	8	12	12	
-4	8	12	7	8	5	12	10	14	11	14	13	4	16	l
-3	10	7	9	7	7	12	11	8	9	6	6	8	10	
-2	5	7	11	9	6	7	9	7	9	5	7	8	10	
-1	13	5	9	7	7	8	11	13	18	7	8	5	16	
0	10	11	8	6	4	11	9	7	9	16	13	17	10	l
+1	14	10	12	2	7	4	10	5	11	10	4	9	10	I
+2	9	19	13	7	6	7	5	8	10	10	11	15	15	I
+3	11	11	10	8	7	4	16	10	12	13	5	8	8	I
+4	9	15	16	10	8	13	7	11	10	13	7	14	7	
+5	9	9	11	14	10	13	12	16	14	12	5	6	4	
+6	5	10	5	9	12	7	7	8	6	6	7	9	9	l
+	-δ													•

r		(r) theor.
$ \begin{array}{c} 0 - 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ \geqslant 19 \end{array} $	0 1 0 9 12 12 22 15 17 21 13 13 11 8 3 11 2	0.1 0.6 1.8 4.3 8.3 13.1 17.7 20.9 22.0 20.9 18.0 14.2 10.3 7.1 4.4 2.6 1.5 0.8 0.7

No. 153. $a = 20^{h}16^{m}$; $B = -8^{0}$. N = 2387; $w_{1} = 10^{24}$; $w_{2} = 10^{17}$. $s_{1} = 54$; $\delta_{1} = 7.6$; $s_{2} = 33$; $\delta_{2} = 24.2$

	-6-	- 5 -	-4	<u>-3</u>	<u>_2</u> -	-1	0 -	+1 -	 - 2 -	 3 ·	 4 -	 - 5 -	+6	$+\alpha$	r	obs.
-6	10	8	17	13	20	12	10	18	18	27	<i>30</i>	2 0	12	1	0- 1	0
5	11	15	10	4	14	14	15	11	18	25	41	28	24		~ -	3+ 1
-4	7	16	10	11	9	11	6	23	16	27	32	28	22			1+10
-3	12	16	12	9	12	5	9	12	13	21	24	19	14			8+4
2	14	17	14	12	5	6	8	16	15	15	18	24	19		8 9	5+8
1	19	23	10	10	2	5	12	6	8	10	10	20	20			15+11
0	29	19	17	5	2	11	5	5	11	20	14	17	20			12+ 9
+1	21	19	12	8	2	6	10	8	10	10	27	16	25		i	$10+8 \\ 9+6$
+2			13	16							10					8+8
+3		17	11	13	3	14	11	9	19	16	14	7	11			8+4
+4	l		10			•					14	13	19			2+ 3
+5	l		12								12				≥24	16
+6											18					*
' +														I	J	

r	obs.	n(r) $theor.$
0— 1	0	0.002
2— 3	3+ 1	0.07
4 5	1+10	0.2+ 0.6
6— 7	8+4	1.4+2.9
8 9	5+8	5.0+ 7.8
	•	10.9+13.9
12—13	12+ 9	16.5 + 18.3
14—15	10+8	18.0 + 17.0
16—17	9+6	14.9+12.4
18—19	8+8	9.7+7.2
20—21	8+4	5.1+ 3.4
22—23,	2 + 3	2.2+1.3
≥24	16	1.8
	,	

No. 154. $a = 20^{\text{h}}24^{\text{m}}$; $B = -9^{\text{o}}$. N = 2888; $w_1 = 10^{\text{g}}$; $w_2 = 10^{\text{g}}$. $s_1 = 33$; $\delta_1 = 9.7$; $s_2 = 38$; $\delta_2 = 25.5$

-	-6-5	-4	— 3 -	<u>-2</u> -	-1	0	+1	+2	+3	+4	+5	+6	_L ~]		n(r)
6	7 15	17	14	17	9	16	14	16	24	20	21	. 8	$+^{\alpha}$	r	obs.	theor.
— 5	15 34	26	18	17	9	19	11	16	24	30	27	12		0-2 3-4	0 0 + 1	0.1
-4	18 23	25	18	10	11	15	7	16	16	35	17	20			2+2	
-3							16	19	17	29	26	20			•	0.5 + 1.0
	18 23															2.0+3.5 $5.4+7.7$
_1														B 1	•	10.3 + 12.8
															•	14.7 + 15.8
0															•	16.5 + 15.8 $14.2 + 12.4$
•	18 21														•	10.2 + 8.0
+2	14 23	24	12	9	8	9	12	12	15	18	24	12			•	6.0 + 4.3
+3	9 15	21	21	8	9	16	18	9	22	19	10	14			•	3.0 + 2.1
+4	14 25	24	18,	22	13	14	2 0	16	22	18	16	20		$27-28$ $\geqslant 29$	3+ 0 8	1.4 + 0.9 1.0
+5	23 35	22	16	23	21	21	2 2	18	13	16	21	22			O	1.0
+6	14 23	15	15	17	20	12	13	11	21	19	14	8				
+	· <i>δ</i>		,					2						l		

No. 155. $\alpha = 20^{\rm h}32^{\rm m}$; $B = -11^{\rm o}$. N = 2485; $w_1 = 10^{10}$; $w_2 = 10^{11}$. $s_1 = 40$; $\delta_1 = 8.0$; $s_2 = 29$; $\delta_2 = 23.7$

-	-6 -	- 5 ·	-4	<u>-3</u>	2 -	1	0 -	+1	+2	+3	+4	十5	+6	$+\alpha$	r		n(r)
-6	11	19	19	16	23	8	16	17	25	18	17	12	9	ι α	0 0	obs.	
-5	17	17	15	19	10	16	28	12	22	28	16	21	11		0-3		0.05
-4	6	21	21	15	23	13	10	10	16	12	10	18	10				$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
— 3	7	18	16	12	5	8	8	9	13	9	10	15	15			•	3.8 + 6.2
— 2												9	7			•	9.0 + 11.9
_1							8					9	8		12—13	11+ 9	14.8+17.2
0					5							_	8		14—15	6+15	18.1+17.5
													5		16—17	11+8	16.1 + 13.7
+1					11				9			8			18—19	7+ 8	11.3 + 8.7
+2	19	22	24	19	11	11	9	18	10	8	16	16	7		20—21	4+5	6.5+4.6
+3	7	24	19	17	17	15	20	11	9	15	21	13	12		22-23	7+ 5	3.1+2.1
+4	14	14	25	24	19	22	16	23	25	14	16	10	8		24—25	4+5	1.2+ 0.7
+5	13	24	27	20	18	15	29	22	18	26	13	22	15			•	0.4+ 0.2
+6		10	12	15	22	22	15	23	25	16	7	9	4		<i>≥</i> 28	4	0.2
·														J	·	·	

No 156. $\alpha = 20^{\rm h}40^{\rm m}$; $B = -12^{\rm o}$. $s_1 = 4.9$; $\delta_1 = 5.9$;

I.
$$[N=960\;;\;w_1=7\;;\;w_2=-.$$
 $s_1=1.5\;;\;\delta_1=4.7\;;\;s_2=3.0\;;\;\delta_2=39.7]$

_	<u>6</u>		5	5	4	:	{	3		2		1	(
C.	6	2	5	3	4	3	10	4	6	4	5	5	4
-6	6	2	3	5	4	4	1	4	8	6	8	12	4
	4	7	3	1	7	6	8	5	6	12	12	4	4
5	8	4	1	9	5	6	5	8	5	10	9	10	9
4	8	9	1	6	4	3	6	11	9	2	11	8	6
-4	8	5	8	5	4	5	7	7	4	6	8	10	6
-3	6	4	5	3	6	6	5	6	6	5	5	9	10
-5	8	5	5	6	6	2	5	7	6	7	7	8	4
<u>_2</u>	8	6	3	6	4	5	6	1	4	5	9	5	6
2	1	7	3	7	5	6	5	0	5	9	4	3	6
1	6	8	5	3	2	6	5	2	4	4	6	1	3
1	8	9	8	5	7	3	5	7	6	5	8	7	4
	8	6	5	13	6	5	4	5	6	8	7	3	3

r		(r) theor.
0	1	0.7
1	7	3.3
2	6	9.3
3	14	17.5
4	24	25.0
5	32	28.4
6	33	26.9
7	13	22.0
8	19	15.5
9	9	9.8
10	5	5.6
11	2	2.9
12	3	1.4
≽ 13	1	1.1

III. $[N=1197; w_1=170; w_2=7.$

$$s_1 = 1.2$$
; $\delta_1 = 12.0$; $s_2 = 1.2$; $\delta_2 = 50.5$]

	<u></u>	3	{	5	4	4		3		2	—	[0
0	4	10	10	4	7	5	4	5	4	5	2	7	6
	6	3	9	7	7	8	3	10	6	3	5	7	3
7-1	7	3	4	8	7	0	4	3	3	8	5	9	6
+2	9	3	7	11	9	5	5	3	6	6	6	7	4
	11	3	3	15	7	5	7	8	· 7	1	9	$\mathbf{\tilde{5}}$	7
+3	9	8	10	11	12	6	11	2	5	9	2	6	5
7.0	9	13	9	12	7	6	7	4	7	6	5	7	8
4	7	5	8	10	9	9	9	8	7	10	7	5	1
1 -	11	10	8	10	10	15	<i>13</i>	12	6	11	8	10	6
+5	5	10	14	12	12	10	12	.11	7	11	5	6	11
	12	8	6	7	10	5	6	9	5	4	10	5	9
+6	8	9	6	4	9	6	9	8	3	2	9	4	6
1 0	4	2	6	9	7	8	7	10	3	4	9	5	11
+	δ												

r		$(r) \ \ theor.$
0	1	0.2
1	$\frac{1}{2}$	1.1
$\frac{1}{2}$	5	3.6
3	13	8.5
4	13	14.8
5	20	21.1
6	20	24.9
7	24	25.3
8	14	22.4
9	20	17.6
10	15	12.5
11	10	8.1
12	7	4.8
13	2	2.6
14	1	1.3
\geqslant 15	2	1.0

N = 3967; $w_1 = 10^6$; $w_2 = 10^4$. $s_2 = 7.2$; $\delta_2 = 44.6$

II. [N=933; $w_1=4$; $w_2=-$. $s_1=-$; $s_2=0.5$; $\delta_2=50.0$]

0		+	1	+:	2	+	3	+4	1	+:	5	+0	3	1	lacksquare		(r)
	7	4	5	6	6	3	3	5	7	8	9	3	1	$+\alpha$	-	obs.	theor.
6	3	8	3	3					-						0	1	0.7
					3	6	4	2	7	4	7	4	4		1	4	3.7
— 5	9	6	12	5	4	9	4	2	4	3	3	4	1		2	10	10.2
5	7	7	13	3	4	8	6	8	6	2	3	6	5		3	22	18.8
	8	6	9	6	4	2	7	6	7	6	4	5	3	İ	4	25	26.0
-4	12	10	7	7	5	8	9	8	2	2	4	6	3		5	23	28.9
	5	8	4	6	8	6	6	8	2	9	0	6	5		6.	26	26.7
-3															7	27	21.1
	8	4	7	9	4	7	7	13	7	3	4	6	3		8	15	14.6
9	8	8	10	5	5	8	11	7	9	2	7	7	5		9	8	8.9
	5	5	7	5	7	7	6	5	7	10	6	5	3		10	3	5.0
	2	3	3	6	1	7	7	4	5	7	3	8	4		11	1	2.5
1	6	7	5	5	3	5	3	6	6	4	4	6	4	i	12	2	1.2
	7	4	5	4	3	4	5	7	6	5	2	6	1		≥ 13	2	0.7
0	<u> </u>							•									

IV. $[N = 877; w_1 = 330; w_2 = 3200.$ $s_1 = 2.2; \delta_1 = 3.6; s_2 = 2.5; \delta_2 = 46.4]$

0)	+	1	+	2	+	3.	+4	<u> </u>	+5	5	+6	3
0	9	7	5	5	6	10	5	4	4	4	3	0	5
11	4	8	6	5	6	0	4	4	4	4	4	4	2
T-1	9	7	2	3	3	7	6	5	4	5	3	4	3
<u> </u>	7	5	7	5	6	2	8	7	1	4	5	5	4
	4	4	6	2	4	5	3	8	1	3	7	2	3
⊥ 3	3	7	12	12	6	7	4	6	7	3	7	4	2
10	4	5	4	6	10	5	5	5	0	5	4	4	0
- 1-4	11	8	2	11	4	5	3	6	6	4	7	3	0
-	4	7	2	11	13	7	9	4	4	3	4	4	3
+ 5	12	10	7	5	8	15	6	4	4	1	5	5	4
, ,	12	8	10	8	9	9	10	5	3	5	4	2	3
+6	7	7	6	5	6	5	7	4	5	7	4	3	4
1 "	7		4	9	4	3	8	4	0	2	2	1	1
+	- δ				سند مند								

r	$ n(r) \atop obs. theor.$						
	<u> </u>						
0	6	1.0					
1	5	4.9					
2	11	12.4					
3	18	22.0					
4	40	28.4					
. 5	27	29.8					
6	14	25.7					
7	20	19.7					
8	8	12.4					
9	6	7.0					
10	5	3.6					
11	3	1.7					
12	4	0.7					
13	1	0.4					
\geqslant 14	1	0.2					

11*

No. 157. $a=20^{\rm h}48^{\rm m}$; $B=-13^{\rm o}$. N=2241; $w_1=150\,000$; $w_2=700\,000$. $s_1=25$; $\delta_1=6.3$; $s_2=12$; $\delta_2=23.2$

-	- 6-	-5 -	-4 -	- 3 -	<u>-2</u> -	-1	0	+1	+2	+3	+4	+ 5	+6	$+\alpha$	
-6	15	10	8	11	19	16	18	15	11	15	17	6	7	' "	-
— 5	12	17	21	11	9	9	9	16	12	12	16	12	7		4
-4	15	18	22	11	11	12	8	12	8	16	10	13	22		ϵ
-3	15	19	11	5	7	6	10	12	9	12	16	21	12	l	8
—2	18	11	16	21	12	6	8	9	9	13	15	15	13		10
-1	14	16	10	9	8	6	6	7	14	11	11	21	17		1:
0	17	14	11	12	10	7	9	7	12	11	10	23	17		14
+1	13	15	16	4	5	6	11	8	11	13	11	17	17		1
+2	23	14	11	14	7	15	9	14	13	16	14	23	8		20
+3	19	12	17	15	9	14	11	15	22	16	21	11	16		2
+4	15	22	22	16	17	15	9	15	12	20	21	18	11		>
+5	10	18	22	<i>33</i>	23	16	17	15	7	13	17	11	6		
+6	12	11	12	28	`20	10	11	10	11	17	8	2	2		
1															!—

r	obs.	$n(r) \mid theor.$
0-3	0+2+0	0.2
4— 5	1+2	0.4 + 1.1
6— 7	7+8	2.3 + 4.6
8- 9	8+11	7.2+10.3
10—11	9+22	13.7 + 16.3
12—13	16+7	18.3+18.8
14 - 15	8+15	17.3 + 15.4
16—17	13+12	13.0+10.2
18—19	5+3	7.4 + 5.1
20-21	2+6	3.5+ 2.2
22 - 23	6+4	1.2 + 0.7
\geqslant 24	2	1.0

 $+\delta$

No. 158. $a=20^{h}56^{m}$; $B=-15^{0}$. N=1563; $w_{1}=4000$; $w_{2}=200$. $s_{1}=9$; $\delta_{1}=3.9$; $s_{2}=5$; $\delta_{2}=17.6$

 $+\alpha$

-	<u>-6-</u>	<u>-5</u> -	-4	<u>3</u>	-2	-1	0	+1	+2	+3	+4	+5	+6
-6	4	6	6	8	3	9	15	5	5	9	3	12	6
— 5	3	6	9	11	5	10	16	6	11	13	9	5	6
4	4	15	6	2	6	3	8	13	4	6	11	10	6
-3	12	9	12	7	5	12	7	8	6	6	18	13	8
-2	2	3	6	8	15	5	7	10	9	11	9	7	9
-1	17	7	8	9	11	10	7	10	9	11	8	8	12
0	15	11	11	5	3	8	6	5	5	12	5	8	14
+1	6	6	10	8	8	6	11	10	7	10	6	15	7
+2	8	3	7	13	8	11	14	7	15	11	10	12	14
+3	5	10	3	10	6	9	11	6	11	11	8	12	12
+4	11	17	21	13	12	12	10	14	11	11	10	12	9
+5	11	12	13	12	14	13	13	12	<i>20</i>	15	6	6	4
+6	5	12	8	11	12	18	12	13	10	15	10	7	5

r		(r) theor.
$ \begin{array}{c} 0 - 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ \geqslant 20 \end{array} $	0 2 8 4 13 22 11 16 12 15 19 18 9 5 8 1 2 2	0.2 0.7 2.2 5.0 9.1 14.2 18.8 21.5 22.4 20.5 17.4 13.4 9.5 6.3 3.9 2.2 1.2 0.6 0.3 0.2

No. 159. $a = 21^{h}4^{m}$; $B = -16^{0}$. N = 2633; $w_{1} = 800$; $w_{2} = 1400$. $s_{1} = 19$; $\delta_{1} = 8.8$; $s_{2} = 25$; $\delta_{2} = 23.1$

	6-	-5·	-4-	<u>-3</u> -	-2 -	-1	0 -	 1 -	+ 2 -	+3 -	+4 -	+ 5 -	+6	$+\alpha$	r	n(r) obs. theor.
-6	10	12	14	13	9	15	10	10	12	11	18	13	16	"	0- 3	
— 5	15	19	12	17	12	18	11	18	19	19	12	18	12		-	0+2 0.1+0
-4	12	19	16	26	20	19	14	14	18	12	20	15	11			1+0 0.5+1
_3	12	19	19	17	14	13	13	18	22	19	17	11	8			7+6 2.5+4 8+10 6.6+9
_2	12	15	16	26	16	18	22	19	25	22	15	14	13		12—13	15+11 12.3+15
-1	8	18	15	20	9	14	18	19	21	11	15	19	13			$\begin{vmatrix} 15+15 & 17.0+17 \\ 12+ & 16.9+15 \end{vmatrix}$
0	9	21	29	15	13	14	12	11	15	10	16	11	13			12+13 13.1+10
+1	16	16	23	22	18	14	28	14	14	12	18	14	17			9+48.5+6
 2	8	15	18	16	25	20	22	15	22	12	20	17	16			$\begin{vmatrix} 9+2 & 4.5+3 \\ 1+3 & 2.0+3 \end{vmatrix}$
+3	· 8	15	12	21	26	26	20	15	20	24	13	15	14			4+ 0 0.7+ 0
+4	6	10	19	16	23	20	21	13	17	14	17	10	15		$\geqslant 28$	2 0.4
+ 5	9	8	22	25	20	17	22	19	12	8	13	11	11			
+6	9	14	22	16	10	16	5	5	10	8	9	14	11			

No. 160. $\alpha = 21^{\text{h}}12^{\text{m}}$; $B = -18^{\text{o}}$. N = 1784; $w_1 = 200\,000$; $w_2 = 100\,000$. $s_1 = 17$; $\delta_1 = 4.8$; $s_2 = 14$; $\delta_2 = 18.0$

_	-6 -	-5 -	_4 -	<u> </u>	- 2 -	<u>-1</u>	0 -	+1	+2-	+3 -	+4 -	+ 5 -	+6	$+\alpha$
6	2	7	8	7	6	13	11	12	8	5	14	8	3	1
— 5	11	7	8	11	13	23	15	13	18	17	21	12	5	
-4	5	12	12	15	10	15	13	12	8	<i>15</i>	15	16	9	
-3	5	6	15	15	17	11	9	12	13	<i>1</i> 8	7	10	6	
-2	6	8	7	10	8	11	12	8	9	4	12	10	13	
1	9	7	18	4	10	4	4	6	14	11	10	18	11	
0	6	7	12	16	7	9	11	9	9	14	14	14	5	
+1	3	9	4	9	5	4	5	12	16	9	16	8	9	
+2	6	6	8	10	10	11	10	21	11	13	12	9	5	
+3	5	13	9	5	12	9	13	17	8	8	20	8	6	
+4	2	14	10	15	9	9	14	12	11	9	13	15	7	
+5	6	14	11	25	11	15	19	12	15	8	13	12	4	
+6	8	12	9	16	10	12	16	15	13	9	16	6	7	
						_								

r	obs.	$n(r) \ theor.$
0- 1	0	0.04
2— 3	2+ 2	0.3 + 0.9
4- 5	7+10	2.4 + 5.0
6- 7	11+10	8.7 + 13.1
8 - 9	15+19	17.2 + 19.9
10—11	11+13	21.2 + 20.0
12—13	17+12	17.6 + 14.3
14-15	8+12	10.6 + 7.5
16—17	7+3	4.9+ 3.0
18—19	4+1	1.7+ 1.0
20-21	1+ 2	0.5 + 0.3
\gg 22	2	0.2
		•
٨		

No. 161. $\alpha = 21^{\rm h}20^{\rm m}$; $B = -19^{\rm o}$. N = 1328; $w_1 = 60$; $w_2 = 20$. $s_1 = 7$; $\delta_1 = 2.9$; $s_2 = 11$; $\delta_2 = 13.4$

	-6 -	<u>-5</u> -	-4 -	<u>-3</u>	<u>-2</u> -	-1	0 -	+1 -	+2	+3 -	+4 -	+5	$+6_{-}$
-6	3	1	10	6	16	5	7	12	7	10	11	6	5
-5	7	4	11	8	8	7	9	11	12	9	10	8	9
-4	6	10	17	6	8	10	10	7	14	13	9	12	11
_3	5	6	7	7	$\overline{2}$	5	5	6	8	8	6	6	8
— 2	10	12	7	4	6	4	4	8	10	11	9	6	4
-1	12	12	9	4	6	8	8	7	2	14	10	7	13
0	10	8	5	7	7	3	5	14	1	6	9	13	5
+1	6	10	8	8	3	11	6	3	8	9	8	9	6
+2	6	6	3	10	7	10	10	8	7	6	5	8	4
+3	5	12	11	5	9	8	6	8	10	9	4	9	10
+4	8	8	10	13	6	7	7	7	12	11	10	2	6
+5	8	7	5	1 5	16	12	9	13	14	10	7	7	3
+6	3	8	2	10	11	13	4	7	7	8	2	4	3

0 0 1	r
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 4 5 6 7 8 9 10 11 12 13 14 15 16

No. 162. $a=21^{\rm h}28^{\rm m};\ B=-20^{\rm o}.\ N=1476;\ w_1=120;\ w_2=160.$ $s_1=14;\ \delta_1=4.2;\ s_2=-;\ \delta_2=-$

_	-6-	- 5	-4	-3	<u>2</u>	-1	0	+1	+2	+3	+4	+ 5 ·	+6	
6	7	9	10	14	9	7	13	10	10	7	9	8	6	
-5	10	12	10	13	6	8	10	6	7	13	12	12	2	
-4	11	11	6	13	6	7	22	9	6	5	12	6	8	
— 3	9	9	15	14	10	7	9.	. 5	11	7	11	12	10	
-2	6	9	8	11	5	6	16	11	14	8	13	3	9	
-1	7	19	8	10	4	1	5	5	7	7	5	9	4	
0	15	12	10	2	4	4	3	4	6	11	17	7	14	
+1	12	10	11	?	5	5	11	7	7	6	6	12	9	
+2	10	8	14	8	8	14	3	11	8	11	12	10	4	
+3	18	12	10	8	4	9	5	8	12	9	6	8	4	
+4	4	15	11	10	10	1 0	12	8	8	14	10	6	6	
+5	8	6	10	6	8	10	11	10	15	12	8	6	6	
+6	4	5	8	8.	9	6	10	8	3	5	9	4	5	
	·									-				-

r	obs.	$n(r) \ theor.$
0— 1	0+ 1	0.04 + 0.2
2- 3	2+4	1.1+ 3.1
4— 5	11+12	6.7+11.5
6— 7	20+14	16.8+21.3
8 9	21 + 15	22.8 + 22.5
1011	22+13	19.3+15.4
12—13	13+ 5	11.3 + 7.5
14—15	7+4	4.8 + 2.8
16—17	1+ 1	1.5+ 0.7
18—19	1+ 1	0.4 + 0.2
≥20	1	0.1
l .		

No. 163. $a=21^{\rm h}36^{\rm m}$; $B=-22^{\rm o}$. N=1653; $w_1=130$; $w_2=120\,000$. $s_1=-$; $s_2=7$; $s_2=7$; $s_2=19.3$

-	-6-	- 5 -	1	<u>-3</u>	<u>-2</u>	·1	0 -	+1	+2	+3	+4	+ 5·	+6	$_{lacktrlack}+lpha$	r	obs.	n(r) theor.
-6	6	7	7	12	10	8	5	6	10	8	14	4	8	"	0 1	<u> </u>	0.1
— 5	11	2	11	10	11	11	8	6	12	5	17	12	8			-	0.5 + 1.5
-4	7	8	11	7	11	8	10	3	14	10	10	17	12			'	3.7-+ 7.2
-3	9	9	7	9	5	6	11	3	7	11	9	17	17		6— 7	12+16	11.7+16.3
-2	8	9	4	4	8	6	5	9	7	12	12	22	10			•	20.0+21.5
1	12	7	11	6	4	5	11	5	6	14	12	10	14			·	21.3+18.8
0	7	13	12	8.	6	6	8	9	11	7	12	11	11			· •	15.4 + 11.6 8.1 + 5.3
+1	13	8	10	9	9	7	6	6	8	9	3	12	12			·	3.2 + 1.9
+2	10	3	11	23	8	7	12	12	10	4	15	10	12			•	1.0 + 0.5
+3	7	5	9	16	10	6	16	13	7	8	4	21	10		20-21	2+ 1	0.3+ 0.1
+4	7	15	11	8	16	11	20	9	10	12	7	9	5		\geqslant 22	2	0.1
+5	8	13	19	20	16	14	17	8	9	15	8	. 9	11				
+6	4	13	10	11	15	12	12	13	11	5	12	11	5				
	$+\delta$					· = :	_	•						•			

No. 164. $a=21^{h}44^{m}$; $B=-23^{o}$. N=2070; $w_{1}=180000$; $w_{2}=50000$. $s_{1}=5$; $\delta_{1}=4.0$; $s_{2}=4$; $\delta_{2}=22.8$

_	-6 -	5	-4	<u>_3</u>	_2 -	-1	0 -	+ 1 ·	+2	+ 3 ·	+ 4 ·	+ 5 -	+6	$+\alpha$	r	obs.	n(r) theor.
6	3	10	9	4	11	16	8	9	15	12	12	9	7	"	0— 1		ineor.
- 5	17	7	10	4	16	13	18	18	8	9	5	16	6				0.05 + 0.2
-4	13	11	12	19	19	12	21	8	23	20	17	13	12			i .	0.7+ 1.9
-3	16	16	10	13	10	15	12	14	13	12	10	10	14	ŧ	6- 7	3+ 6	3.8+ 6.8
-2	17	7	10	18	20	9	9	24	12	10	12	10	12			•	10.3+13.8
-1	10	21	13	12	7	8	9	5	16	12	17	12	11			· ·	17.1+18.8
0	10	15	13	16	3	12	4	14	13	20	13	17	10		i	•	19.4 + 18.2 $15.8 + 13.0$
+1	16	19	10	12	8	13	5	16	16	12	22	10	15		1	•	10.0 + 13.0 10.0 + 7.3
+2	11	12	8	11	5	22	13	9	8	11	1 0	17	14				4.9 + 3.2
+3	18	18	24	11	14	6	10	11	16	16	2 0	10	11		20-21	4+ 2	2.0-+- 1.1
+4	12	14	8	22	14	15	7	12	12	10	11	12	7			•	0.6+0.3
+5	6	11	11	15	11	12	9	13	23	13	10	9	9		\geqslant 24	2	0.2
+6	5	5	13	10	12	12	12	16	10	11	9	9	8				
+	-8													•	I		voleta e transporta

No. 165. $a=21^{\rm h}52^{\rm m}$; $B=-25^{\rm o}$. N=2427; $w_1=480$; $w_2=400\,000$. $s_1=4$; $\delta_1=7.8$; $s_2=29$; $\delta_2=21.4$

_	-6 -	_5·	<u>-4</u> -	_3 -	<u>-2</u> -	—1	0	+1	+2	+3	+4-	+ 5 -	+6	$+\alpha$
— 6	10	13	9	14	9	11	15	14	20	12	15	12	8	' ~
— 5	16	8	15	12	18	11	10	10	14	10	18	14	9	
-4	10	17	15	14	15	14	6	15	8	21	20	16	7	
- 3	9	19	15	12	13	13	21	9	24	2 2	14	11	7	l
-2	7	13	10	13	11	12	9	10	16	18	15	13	11	
-1	11	14	20	12	14	14	12	14	14	22	19	26	13	
0	19	15	9	18	23	14	13	12	13	20	15	15	9	
+1	11	21	13	14	15	11	14	7	22	14	20	18	14	
+2	15	24	24	18	12	15	9	10	21	14	16	17	15	
+3	7	21	17	13	21	20	17	13	21	28	20	14	6	
+4	11	17	20	20	18	18	8	9	14	20	20	15	14	
+5	8	12	15	17	14	13	20	14	10	23	9	13	6	
+6	6	12	12	12	9	11	25	21	14	17	18	6	12	
	$+\delta$													•

r		n(r)
	obs.	theor.
0- 5	0	0.9
6— 7	5+5	1.4+2.7
8 9	5+12	4.8+ 7.5
10—11	9+10	10.6 + 13.7
12—13	14 + 14	16.3+18.2
1 4 —15	24+17	18.0+17.1
16—17	4+7	15.2 + 12.6
18—19	9 + 3	10.0 + 7.4
20—21	12+ 8	5.3 + 3.6
22 - 23	3+ 2	2.3 + 1.4
\geqslant 24	6	2.0

No. 166. $a = 22^{\text{h}}0^{\text{m}}$; $B = -26^{\text{o}}$. N = 1010; $w_1 = -$; $w_2 = 24$. $s_1 = -$; $s_1 = -$; $s_2 = 11$; $s_2 = 10.9$

-	-6 ·	— 5 -	<u>-4</u> -	<u>-3</u> -	- 2 -	-1	0 ·	+1 -	 	 -3 -	 4 -	 -5 -	 - 6	$+\alpha$
6	5	3	4	4	9	6	7	4	4	4	7	3	5	' "
— 5	6	11	7	11	5	11	7	5	7	8	10	4	4	
-4	4	5	8	7	1	5	8	5	5	6	3	7	8	
-3	4	5	7	4	6	12	13	5	4	3	4	9	5	
-2	7	2	5	2	5	7	7	4	7	7	3	8	6	
—1	12	4	12	7	4	2	5	4	5	4	3	8	7	
0	4	6	8	4	4	3	0	4	3	8	6	4	5	
+1	6	7	5	5	4	6	3	6	4	6	9	3	6	
+2	6	7	5	7	4	3	4	4	6	4	7	4	5	
+3	7	6	4	6	4	5	10	7	9	6	4	3	6	
+4	7	10	10	11	9	7	6	2	8	6	5	4	4	
+5	3	11	1 0	12	10	6	11	10	5	6	6	5	6	
+6	5	10	6	9	11	5	7	9	6	5	5	7	2	
														u

l	n	(r)
r		theor.
0	1	0.5
1	1	2.6
2	5	7.7
3	13	15.3
4	34	22. S
5	28	27.4
6	26	27.4
7	25	23 .4
8	9	17.4
9	7	11.5
10	8	6.9
11	7	3.7
12	4	1.9
≥ 13	1	1.3

No. 167. $\alpha = 22^{\text{h}}8^{\text{m}}$; $B = -27^{\circ}$. N = 1552; $w_1 = 700\,000$; $w_2 = 160$. $s_1 = 22$; $\delta_1 = 3.7$; $s_2 = 39$; $\delta_2 = 13.8$

-	-6 -	– 5	-4	— 3 ·	<u>-2</u> -	-1	0 -	+ 1 ·	+2	f 3 ·	+ 4·	+ 5 ·	+6	- +α	r	
- 6	5	11	9	8	7	8	4	8	10	6	5	4	1	"		T
5	5	9	12	15	7	4	7	14	3	12	3	2	2		$0 \\ 1$	
-4	5	14	12	12	14	11	14	10	7	11	9	4	3		$\frac{2}{3}$	
-3	10	10	11	13	14	9	11	15	9	5	14	11	8		4 5	
— 2	12	12	12	12	9	11	12	15	5	5	5	5	1		6	
-1	17	12	18	14	9	7	6	7	8	6	5	4	7		7 8	
О	9	9	11	9	5	7	8	9	4	11	5	11	8		9 10	
+1	8	11	5	4	7	10	11			9	8	10	7		11 12	
+2	6	10	7	9	6	10	8	12	14	10	12	9	4		13	
+3	6	17	10	11	14	14	17	16	6	6	14	15	19		14 15	
+4	9	15	16	15	12	11	15	12	7	16	8	9	4		$\begin{array}{c} 16 \\ 17 \end{array}$	
+ 5	10	12	12	.14	12	11	7	8	2	11	9	4	9		$\begin{array}{c} 18 \\ \geqslant 19 \end{array}$	1
+6	10	3	12	11	7	9	10	10	5	10	6	3	2	i	//19	1
	 -δ													ı		

	(r)
obs.	theor.
0	0.01
2	0.1
4	0.7
5	2.1
10	4.9
14	9.0
	14.0
	18.7
	21.4
	22.3
	20.6
	17.5
	13.5
	9.5
12	6.4
	4.0
3	2.3
	1.3
	0.7
1	0.8
	0 2 4 5 10

No 168. $a=22^{\rm h}16^{\rm m}\;;\;B=-28^{\rm o}.\;\;N=1235\;;\;w_1=28\;;\;w_2=1500.$ $s_1=4\;;\;\delta_1=1.8\;;\;s_2=-\;;\;\delta_2=-$

-	6-	- 5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6	$+\alpha$
6	4	5	4	6	8	5	4	10	7	8	4	6	4	"
5	3	3	9	12	8	6	14	12	9	10	10	12	11	
-4	7	6	6	11	8	7	2	7	13	6	5.	13	6	
-3	8	7	7	3	7	5	13	11	10	17	10	7	11	
-2	8	4	9	11	9	10	4	15	6	6	7	7	9	
-1	4	8	13	6	4	12	3	10	10	10	7	5	6	
0	12	4	9	4	3	5	6	4	10	6	7	6	5	
+1	9	7	6	9	7	6	8	5	7	5	5	5	7	
+2	9	8	6	3	9	11	8	10	7	5	3	6	6	
+3	7	14	5	5	10	7	16	8	5	12	4	8	7	
+4	7	8	8	4	16	6	8	9	5	3	10	6	0	
+5	3	8	7	3	9	6	11	15	б	9	6	8	3	
+6	2	3	5	10	7	8	5	11	5	5	6	4	4	
,														-

r	obs.	$(r) \ \ theor.$
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 $\geqslant 17$	1 0 2 12 16 20 25 23 18 13 14 8 6 4 2 2	0.2 0.9 3.1 7.4 13.6 19.8 23.9 25.0 23.0 18.5 13.5 9.0 5.5 3.1 1.7 0.7 0.3 0.2

No. 169. $a = 22^{h}24^{m}$; $B = -29^{o}$. N = 802.

-	-6	<u></u> 5 ·	-4 -	-3	2 -	-1	0 -	 1 -	+2 -	 - 3 -	 4 -	 -5	+6	~ـــــــــــــــــــــــــــــــــــــ
-6	0	4	3	3	1	4	5	3	3	4	4	3	2	$+^{\alpha}$
-5	8	7	8	2	6	4	3	4	1	4	8	5	4	
-4	5	4	7	7	7	3	1	4	3	8	4	6	1	
-3	2	9	6	7	3	6	4	3	8	7	6	4	5	
2	4	9	9	6	6	3	6	3	1	5	5	5	6	
-1	3	7	6	1	4	4	6	7	8	6	7	5	6	
0	8	4	10	2	2	5	5	3	3	7	3	7	4	
+1	4	10	5	2	2	6	10	3	3	6	5	5	11	
+2	6	8	6	1	5	8	2	4	5	5	3	5	6	
+3	8	9	6	4	5	7	3	4	3	4	5	7	5	
+4	5	4	6	5	10	7	1	6	7	2	5	5	5	
+5	7	4	2	6	1	5	3	2	4	3	4	5	2	
+6	1	6	2	3	4	4	5	5	3	2	5	5	4	
+	δ													1

	r		(r) $ theor.$
-	0	1	1.5
	1	10	7.0
ı	2	14	16.4
	3	25	26.0
ı	4	31	31.0
	5	31	29.6
	6	23	23.5
	7	15	15.9
	8	10	9.4
Ì	9	4	4.9
1	10	4	2.4
1	≽ 11	1	2.1

No. 170. $a=22^{\rm h}32^{\rm m}\;;\;B=-30^{\rm o}.\;\;N=806\;;\;w_1=10\;;\;w_2=5.$ $s_1=13\;;\;\delta_1=1.7\;;\;[s_2=3\;;\;\delta_2=10.0]$

_	-6	-5	-4	-3	-2-	-1	0 -	+1 -	+2-	+3	+4 -	+ 5 -	+6	$+\alpha$
6	2	2	8	4	8	3	4	3	4	9	6	2	2	"
— 5	5	6	9	8	8	3	8	5	5	9	3	5	8	
4	5	1	3	6	3	8	3	6	7	9	7	5	6	
—3	4	2	4	2	5	4	7	6	1	6	5	6	8	
2	4	5	3	4	4	2	3	10	6	4	5	8	7	
1	5	5	7	2	2	2	2	3	2	7	2	6	7	
0	6	1	3	7	0	1	4	3	5	3	7	4	2	
+1	3	13	10	7	7	2	4	4	6	8	7	2	3	
+2	5	7	3	6	2	2	2	4	3	6	2	7	7	
+3	6	6	7	4	1	4	2	3	4	3	5	3	2	
+4	5	8	8	6	4	6	4	4	5	5	6	4	3	
+5	4	4	7	3	3	6	5	6	2	8	4	9	3	
+6	5	4	5	3	5	5	2	5	6	4	10	6	1	

1 6 24 25 27 24	1.4 6.9 16.2 26.0 31.0
24 25 27	16.2 26.0 31.0
$\frac{25}{27}$	26.0 31.0
27	31.0
24	1
	29.6
23	23,6
17	16.0
13	9.5
5	5.0
3	2.4
0	1.1
Û	0.4
1	0.2
'	
	17 13 5 3 0 0

No 171. $a=22^{\rm h}40^{\rm m}$; $B=-31^{\rm o}$. N=1574; $w_1=20$ 000; $w_2=100$. $s_1=16$; $\delta_1=3.8$; $s_2=8$; $\delta_2=15.6$

_	-6 -	_5 ·	-4	<u>3</u>	-2	-1	0	+1	+2	+3-	+4	+5 -	+6	$+\alpha$	r		(r) theor.
6	4	8	9	12	9	11	17	11	11	5	3	3	6				
— 5	9	10	9	7	17	14	15	12	8	17	2	7	2		$0 \\ 1$	$\begin{array}{c c} 0 \\ 1 \end{array}$	$0.01 \\ 0.1$
_5 _4		11	9				1 5		10	11	2	12	7		$egin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array}$	4	0.7
		11	9	•	1+	11	15	14	10	11	_	14	•		3	5 5	2.1
-3	10	10	14	6	10	5	4	9	8	15.	9	14	6	-	4. 5	12	4. 8 8.9
3	٦	10	10	1.3	-	0	10	10	10		0	10	9	3	6	12	13.9
-2	S	13	12	12	5	8	13	10	19	11	9	10	3		7	15	18.5
—1	11	14	9	7	6	10	14	11	10	10	13	7	8		8	13	21.4
															9	20	22.3
0	8	9	11	4	11	9	9	6	11	8	6	13	5		10	19	20.2
+1	10	13	4	1û	14	5	11	12	10	14	14	10	5		11	19	17.5
				10	11			1 =	10	11	11	10	-		12	13	13.6
+2	12	16	12	6	9	7	7	9	15	7	10	6	5		13	6	9.7
		0	=	5	0	11	13	0	15	10	11	10	3		14 15	$\frac{12}{7}$	6.5 4. 1
+3	14	8	5	Э	9	11	13	0	13	10	11	10	9		16	1	2.3
+1	7	9	11	9	9	12	15	15	11	7	6	5	2		17	4	1.3
					0	0	_	10	10	10		•	_		≥ 18	î	1.4
+5	12	11	11	12	6	8	7	12	10	12	4	6	7				
+6	7	8	3	10	8	11	9	14	9	7	5	1	6				
+	-δ													-			

No. 172. $a = 22^{h}48^{m}$; $B = -32^{0}$. N = 875; $w_{1} = 500$; $w_{2} = 600$. $s_{1} = 15$; $\delta_{1} = 1.3$; $s_{2} = 7$; $\delta_{2} = 10.6$

_	-6 -	- 5 -	-4 -	<u>-3</u>	2	-1	0	+1-	<u>+2</u>	+ 3 -	 4 -	+5 -	+6
-6	1	4	5	2	7	6	8 -	. 7	7	13	4	5	6
_5	6	2	5	12	3	10	1 1	10	7	10	10	3	4
-4	5	4	5	7	8	10	4	7	5	5	6	10	8
— 3	7	3	5	8	7	6	7	7	7	7	10	4	3
— 2	8	4	4	4	4	5	7	9	4	7	5	8	6
-1	4	5	5	7	5	1	6	5	4	3	9	6	5
0	10	3	5	3	1	3	5	6	4	5	1	1	4
+1	7	5	3	1	5	4	2	3	4	5	9	3	4
+2	6	11	5	4	5	5	4	2	3	4	1	0	0
+3	6	3	9	3	6	3	5	4	4	2	5	5	3
+4	4	5	8	7	11	3	5	3	3	1	4	0	3
+5	7	8	3	8	4	11	6	9	4	0	4	0	5
+6	4	6	4	3	4	6	8	2	6	4	10	1	4
!					_			سحسبسب ا					

	n	(r)
r	1 -	theor.
0	5	1.0
1	9	5.0
2	6	12.6
3	22	22.1
4	33	28.5
5	3 0	29.9
6	16	25.7
7	18	19.2
8	10	12.3
9	5	7.0
10	9	3.6
11	4	1.7
12	1	0.7
≽ 13	1	0.5

 $\begin{array}{ll} \mbox{Ne} \ \ 173. & a = 22^{\rm h}56^{\rm m}; \ \ B = -33^{\rm o}. & N = 981; \ \ w_1 = 50; \ \ w_2 = 8. \\ & s_1 = -; \ \ \delta_1 = -; \ \ s_2 = -; \ \ \delta_2 = - \end{array}$

_	-6 -	-5 ·	<u>-4</u>	— 3 ·	-2	-1	0 -	+1-	 	 - 3 -	 4 -	 5	+6	$_{lacktrian} + \alpha$
6	5	6	8	8	4	4	4	5	5	4	5	5	2	"
5	3	5	12	6	5	11	8	7	8	3	3	9	1	
-4	7	9	7	9	8	7	7	6	5	5	5	6	6	
-3	5	6	8	6	5	4	9	4	3	7	6	7	4	
-2	9	5	7	8	7	7	2	8	5	8	11	5	4	
-1	8	5	7	4	4	5	5	4	7	9	8	6	3	
0	3	9	14	2	5	7	6	8	5	4	5	7	6	
+1	5	7	2	8	8	9	5	8	7	2	4	5	3	
+2	2	3	6	14	10	10	6	7	4	4	3	7	10	·
+3	8	5	3	4	12	11	7	10	8	4	7	5	5	
→ 4	2	3	12	5	9	8	7	6	5	6	6	3	1	
+5	2	4	6	11	7	7	6	3	4	7	1	3	4	
+6	1	5	3	0	7	5	3	3	6	3	3	2	5	

r		(r)
	obs.	theor.
0	1	0.6
1	4	3.0
2	9	8.6
3	19	16.5
4	20	24.0
5	32	28.0
6	19	27.2
7	25	22.7
8	18	16.5
9	9	10.7
10	4	6.2
11	4	3.3
12	3	1.6
13	0	0.7
\geqslant 14	2	0.6
•		

 $+\delta$

№ 174. $a = 23^{\text{h}}4^{\text{m}}; \ B = -34^{\circ}. \ N = 981; \ w_1 = 5; \ w_2 = 17.$ $s_1 = -; \ \delta_1 = -; \ s_2 = 8; \ \delta_2 = 11.0$

 $+\alpha$

	-6 -	-5 ·	<u>-4</u>	<u>-3</u>	-2-	-1	0 -	+1	+2	+3	+4	+ 5 ·	+6
-6	3	5	3	5	6	3	6	6	5	6	5	3	2
— 5	6	1	6	3	12	2	7	12	6	3	4	3	6
-4	8	7	9	5	4	2	4	3	2	6	10	7	3
-3	8	8	4	4	7	3	2	7	6	4	6	12	6
-2	4	6	10	6	9	5	6	6	2	6	7	8	8
—1	4	1	10	7	1	5	4	4	5	5	11	5	5
0	7	8	6	2	7	6	8	3	10	10	11	11	6
+1	5	4	2	4	6	3	3	5	15	7	4	.10	10
+2	6	4	10	6	4	4	3	6	6	7	10	8	7
+3	4	4	7	10	6	5	8	5	1	5	7	7	3
+4	3	5	9	8	7	8	6	3	8	4	7	1	7
+5	5	8	7	9	7	4	6	5	4	4	6	3	9
+6	1	8	5	7	4	7	4	5	10	7	8	6	4

	n(r)								
r	obs.	theor.							
0	0	0.6							
1	6	3.0							
2	8	8.5							
3	18	16.5							
4	25	23.9							
5	21	27.9							
6	30	27.2							
7	23	22.7							
8	15	16.5							
. 9	5	10.6							
10	11	6.2							
11	3	3.3							
12	3	1.6							
13	0	0.7							
≥14	1	0.5							
		1							

№ 175. $a = 23^{h}12^{m}$; $B = -34^{o}$. N = 679; $w_{1} = -$; $w_{2} = -$. $[s_{1} = 4; \delta_{1} = 0.8; s_{2} = -; \delta_{2} = -]$

-	-6-	-5 -	-4 -	<u>-3</u> -	<u>-2</u> -	-1	0 -	 1-	- -2 -	+ 3 ·	 4 -	 -5 -	+6	$+\alpha$	r
-6	2	1	1	2	4	2	3	2	2	6	1	1	6	1 "	
5	2	4	6	5	4	2	2	7	6	8	7	8	3		0
4	3	3	3	5	5 (4	5	2	6	3	4	1	4		2
-3	7	7	7	8	3	2	2	9	2	6	11	6	2		3
-2	5	7	4	2	4	3	1	3	4	4	5	2	4		4
1	3	3	0	7	4	3	4	3	4	7	4	5	2		5
0	6	2	3	4	1	3	4	5	4	3	7	2	5		6
+1	4	8	5	3	0	4	0	Ú	3	7	3	1	3		7 8
+2	3	3	7	4	5	2	2	1	3	5	5	4	7		9
+3	4	1	4	3	3	6	7	5	5	3	4	5	5		10
+4	2	6	9	3	1	5	3	3	2	5	5	6	$_2$		≥11
+5	1	5	5	3	5	4	3	4	4	4	3	ô	5		
+6	3	4	6	10	6	5	4	4	6	6	1	4	6		
+	δ	-	-						-					į	l

r		(r) theor.
0	4	3.2
1	13	12.3
2	23	25.0
3	33	33.0
4	33	33.2
5	25	26.6
6	17	17.4
7	13	10.2
8	4	5.1
9	2	2.2
10	1	0.9
≥ 11	1	0.7
		,

No 176. $a = 23^{h}20^{m}$; $B = -35^{0}$. N = 1213; $w_{1} = 100$; $w_{2} = 33$. $s_{1} = 9$; $\delta_{1} = 2.6$; $s_{2} = 4$; $\delta_{2} = 13.2$

-6-5-4-3-2-1 0+1+2+3+4+	+2 +0	+α
6 3 12 10 4 1 8 5 3 5 6 10	4 6] ' "
_5 8 5 7 5 7 7 6 6 10 4 4	12 3	
-4 3 11 6 11 3 7 7 7 7 8 6 12	6 2	
<u>-3</u> 9 5 7 11 9 6 8 8 8 11 4	5 6	
-2 2 9 9 10 6 9 5 10 8 15 6	7 7	
—1 7 10 6 12 8 8 10 8 4 8 11	3 3	
0 5 11 6 10 5 7 7 8 9 6 8	4 1	
+1 2 11 4 6 11 8 10 7 8 11 14	8 4	
+2 8 15 16 10 10 7 11 12 9 8 5	10 2	
+3 9 9 8 8 4 8 10 12 15 4 7	4 0	
+4 9 5 7 4 2 8 12 6 5 11 7	7 2	
+5 6 7 5 6 12 5 5 10 5 5 5	4 8	
+6 5 7 1 9 8 9 8 5 5 8 5	8 7	

r	$ \begin{array}{c} n \\ obs. \end{array}$	(r) theor.
0	1	0.1
1	3	1.0
2	6	3.3
3	7	8.0
4	14	14.2
5	22	20.5
6	18	24.4
7	21	25.2
8	27	22.7
9	12	18.0
10	14	13.0
11	11	8.4
12	8	5.1
13	0	2.9
14	1	1.5
15	3	0.7
≥ 16	1	0.5
<u></u>	فيسيده سيبدا	

No 177. $a=23^{\rm h}28^{\rm m}$; $B=-36^{\rm o}$. N=1064; $w_1=6$; $w_2=13$. $s_1=-$; $s_1=-$; $s_2=-$; $s_1=-$

_	<u> -6 -</u>	-5	-1	<u>-3</u>	<u>-2</u>	<u>-1</u>	0 -	+1	+2	+3	+4	+ 5 -	+6	
-6	5	9	1	6	10	8	3	3	4	10	4	5	4	
-5	7	5	7	6	4	9	4	7	4	6	3	9	4	
-4	8	5	4	6	5	6	9	11	5	1	4	6	5	
- 3	7	9	7	6	8	6	6	5	11	4	6	7	8	
-2	11	7	11	8	6	7	4	5	6	5	4	9	6	
-1	5	5	5	4	3	4	8	5	4	4	8	12	6	
0	3	0	8	3	8	9	9	12	7	4	11	7	6	
⊢ 1	9	6	7	6	5	7	2	7	3	2	11	10	5	
 2	11	4	4	6	4	7	6	2	6	4	7	11	7	
 -3	4	8	7	6	10	8	6	5	1	5	10	6	6	
⊢4	12	5	9	9	5	10	6	6	10	5	3	8	5	
 -5	7	9	8	6	6	5	3	5	2	6	7	3	3	
 -6	8	9	8	11	12	6	11	5	5	4	7	9	4	
+	δ													l

r		(r) $ theor.$
0	1	0.3
1	3	2.0
2	4	6.2
3	11	13.2
4	24	20.3
5	26	25.8
6	30	27.2
7	20	24.3
8	15	19.3
9	14	13. 6
10	7	8.5
11	10	4.9
12	4	2.6
≥ 13	0	2.1

 $\begin{array}{lll} \mbox{N} & 178. & a = 23^{\rm h}36^{\rm m}; \ B = -36^{\rm o}. & N = 1022; \ w_1 = 5; \ w_2 = 2.5. \\ & [s_1 = 3; \ \delta_1 = 1.3; \ s_2 = -; \ \delta_2 = -] \end{array}$

-	-6-	<u>-5</u>	4	<u>-3</u>	<u>-2</u>	1	0	+1 -	+2	+3 -	+4	+ 5 -	+6	$_{ullet}+lpha$
-6	2	8	5	5	3	7	5	5	5	6	8	3	7	1 4
— 5	6	2	5	12	9	6	5	7	2	1	5	4	2	ŀ
4	8	11	7	2	5	6	8	3	4	6	5	4	2	
3	9	5	13	3	7	5	6	8	4	3	4	7	5	
-2	7	8	10	11	6	5	7	12	ð	3	8	3	6	
—1	9	6	3	6	9	3	6	6	9	7	7	13	8	
0	5	8	5	13	5	5	2	6	4	10	$\mathbf{\hat{o}}$	10	5	
+1	8	3	4	7	7	5	7	6	9	5	6	6	7	
+2	11	10	8	7	2	3	9	7	7	4	8	3	8	
+3	3	7	4	10	4	10	6	11	9	7	8	7	3	
+4	7	5	11	11	4	7	9	7	6	8	4	4	5	
+5	1	1	5	4	5	2	10	6	8	6	8	6	4	
+6	4	2	4	6	5	4	1	3	4	5	6	6	4	

r .	obs.	(r) theor.
0	0	0.4
1	4	2.5
2	10	7.5
3	15	15.0
· 4	20	22.4
5	27	26.9
6	25	27.0
7	22	23.3
8	17	17.5
9	11	11.8
10	7	7.2
11	6	4.0
12	2	2.0
13	3	1.0
≥14	0	0.5
	·	

 $a = 23^{\rm h}44^{\rm m}\,; \ B = -37^{\rm o}. \ N = 1310\,; \ w_1 = 25\;; \ w_2 = -.$ *№* 179. $s_1 = -$; $\delta_1 = -$; $s_2 = -$; $\delta_2 = -$

_	-6 -	_5 ·	-4 ·	<u>-3</u>	<u>-2</u> -	-1	0 -	+1 -	+ 2 ·	+ 3·	+ 4	+5	+6	$_{lackbox{-}}+lpha$	l		(r)
— 6	4	8	7	6	6	4	4	8	10	5	6	8	6	lacksquare	r	obs.	theor.
	_		0	_						_	_	_		1	0	0	0.2
-5	5	8	8	5	11	10	8	4	6	14	7	10	9		$\frac{1}{2}$	3	0.8
-1	11	8	11	8	10	8	11	11	8	11	5	8	7		$egin{array}{c} 1 \ 2 \ 3 \end{array}$	$\frac{2}{7}$	2.4 5.6
-3	15	11	6	11	10	0	11	10	-	0	4	10	10	ľ	4	14	11.2
	10	11	O	11	10	9	11	10	7	8	4	10	10		4 5	14	17.3
-2	9	11	7	9	9	5	6	7	4	11	10	7	3		6	20	22.0
-1	13	8	7	6	12	9	10	4	4	5	4	8	8	i	7 8	$\begin{array}{c} 19 \\ 25 \end{array}$	$24.2 \\ 23.7$
												O	(3	l	9	$\frac{25}{15}$	20.0
0	10	9	9	10	5	5	3	10	3	4	17	6	6		10	18	15.7
+1	9	12	7	12	8	4	11	6	1	5	7	7	6		11	17	10.8
			_								-				12	5	7.1
+2	6	12	8	10	7	7	2	3	8	6	6	12	6		13 14	$rac{4}{3}$	$\begin{array}{c} 4.2 \\ 2.3 \end{array}$
+3	8	11	10	7	7	6	11	7	10	9	6	5	4		15	2	1.2
+1	5	11	9	14	11	2	4	9	13	9	6	3	3		$ \begin{array}{c} 16 \\ \geqslant 17 \end{array} $	0 1	$\begin{array}{c} 0.6 \\ 0.6 \end{array}$
+5	11	13	13	15	9	9	8	4	5	7	1	14	8			'	
+6	5	7	7	8	6	10	8	8	3	10	8	5	1				
+	$-\delta$										-						

No. 180. $a=23^{\rm h}52^{\rm m};\ B=-38^{\rm o}.\ N=908;\ w_1=-;\ w_2=40.$ $s_1=-;\ \delta_1=-;\ s_2=4;\ \delta_2=10.8$

-	- 6-	5 –	-4 -	-3 -	<u>-2 -</u>	-1 	0 -	+1 -	+2	+3	+4	+5	+6	. <u>.</u>
-6	5	4	3	5	8	5	5	5	3	3	3	7	5	
-5	6	8	5	3	5	4	6	4	8	10	3	3	1	
-4	4	5	3	4	3	4	4	2	4	2	4	7	10	
-3	4	9	7	4	8	5	11	8	6	7	6	7	5	
-2	4	3	6	4	6	5	6	4	4	7	2	4	4	
-1	5	7	8	1	4	4	3	7	3	7	2	3	5	
0	6	6	6	2	6	4	5	2	5	6	7	6	6	
 1	4	8	6	5	5	4	3	8	4	6	3	8	5	
⊢ 2	12	8	3	5	5	4	4	5	3	9	4	7	3	
+3	4	5	9	8	3	5	10	6	2	5	5	10	5	
-4	2	7	6	11	12	3	2	6	7	2	9	4	9	
 5	8	8	8	10	6	4	4	8	4	2	5	2	2	
⊢ 6	6	3	9	10	8	11	2	5	4	4	11	7	4	

r		(r)
	008.	theor.
0	0	0.8
1	2	4.2
2	14	11.2
3	21	20.3
4	34	27.2
5	29	29.3
6	21	26.3
7	14	20.3
8	16	13.6
9	6	8.0
10	6	4.4
11	4	2.1
\geqslant 12	2	1.6

Erratum.

On page 37, Ch. 52.

for
$$w_1 = 17$$
 read $w_1 = 7$,

$$s_1 = 4$$
 $s_1 = 16$

",
$$\frac{s_1 \Delta_1}{169} = 0.02$$
 ", $\frac{s_1 \Delta_1}{169} = 0.14$,

",
$$s_2 = 1$$
 ", $s_2 = 3$, and

"
$$\frac{s_2 \mathcal{A}_2}{169} = 0.01$$
 " $\frac{s_2 \mathcal{A}_2}{169} = 0.03$