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Except for the painful beginning
and end, well-deserved good fortune
accompanied Moser all his life.
Accomplishment and recognition
came to him early and lastingly.
He was the first recipient of the
G. D. Birkhoff Prize of the AMS
and SIAM. He was honored by a
Wolf Prize, medals were showered
on him, academies vied to elect
him as their member. He was
an outstanding expositor, much in
demand. He delivered the Gibbs
lecture of the AMS, the Pauli
lectures of the ETH, the Hardy
lectures of Cambridge University,
the Hermann Weyl lectures of
the Accademia Lincei, and the
von Neumann lecture of SIAM. He
was president of the IMU for three
years.

He was fortunate in having many good students, with whom he continued close
scientific and personal relations. He loved his family fiercely, two daughters and a stepson,
six grandchildren and charming and talented sons-in-law.

According to an old Roman proverb, ‘what doesn’t destroy me makes me stronger’.
This fits Jürgen, for in his early youth he was exposed to deadly danger, but survived the
stronger for it. In 1938, the ten year old Jürgen was offered a chance to enroll in an elite
boarding school for future leaders, but his parents who saw the Nazi’s plan were able to
extricate him. Jürgen’s father was a neurologist, and as such was sometimes called upon to
declare someone as ‘unfit to live’ according to the Nazi eugenics program. Jürgen’s father,
courageously, always refused to issue such certifications.
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At the age of 15, Jürgen and his gymnasium classmates were pressed by the Nazi
authorities into the so-called people’s army, and at 16 they were thrown against Russian
tanks besieging Königsberg. Only three of his class survived; his older brother was killed.
Before the city was overrun, its population was evacuated by boat to the British zone.
Many of the boats were sunk, with large loss of life; Jürgen and his parents survived
but were separated. By the time they established contact, six months later, Jürgen’s
parents were back in the Russian zone. In an attempt to join them he was caught at
the border and thrown into prison, but escaped. Back in the Russian zone he was not
allowed to enter a university because of his bourgeois background, so he crossed the
border in the opposite direction. This time he avoided capture, although he was fired
upon. He arrived in Göttingen, in 1947, penniless, but already dedicated to mathematics.
Fortunately Franz Rellich recognized his exceptional qualities. Under his tutelage Jürgen
thrived. He acquired from Rellich his lifelong interest in the spectral theory of differential
equations, and probably learned how to lecture on mathematics.

Later Jürgen came under the influence of Carl Ludwig Siegel. Like Rellich, Siegel was
a lifelong anti Nazi, but his personality differed altogether from Rellich’s outgoing nature.
Siegel had a pessimistic view of life. He claimed to have chosen to study astronomy at
the university because it was so far removed from the world. After a semester he realized
that mathematics was even farther removed from reality, and he switched, but he retained a
lifelong interest in astronomy, which he passed on to Jürgen. The book by Siegel and Moser
on celestial mechanics grew out of this joint interest. It is a revision of Siegel’s 1956 book,
which was based on notes Moser took of Siegel’s lectures. The 1973 monograph, ‘Stable
and random motion in dynamical systems, with special emphasis on celestial mechanics’,
based on his Weyl lectures, is written entirely from Moser’s point of view.

Jürgen came to the Courant Institute in 1953 on a Fulbright fellowship. This was a
part of Richard Courant’s policy of bringing talented young German scientists to the US
to further their education. After Jürgen had been in our circle for a short time, we realized
that he was very special, a prince among men, a knight in shining armor. He had all the
German virtues: devotion to hard work, a love of the outdoors, a love of beauty, of music;
I don’t know where he stood on poetry. He was exceedingly good company to do things
with, like hiking in the mountains. He was very good in describing in detail something
interesting that happened to him. He loved adventure and to test his powers; he had great
self-confidence. ‘I thought I could do anything I really wanted to do’, he once said in an
unguarded moment. He loved hang gliding passionately.

Jürgen was very direct; he said what was on his mind, even when it was not what you
had hoped to hear. But that only deepened his friendships, for his judgments were mostly
right, and because everything he did was done with great kindness.

Jürgen was a very private person as well. Perhaps this can be traced back to the
chaotic years after the war, when he developed the habit of shutting himself off from his
surroundings, and concentrating on thinking about a mathematical problem. Sometimes
he would put a tea cozy on his head as an indication to his family that he was not to be
disturbed.

Richard Courant soon came to admire and love Jürgen. He was delighted to have him
as his son-in-law, and as director of the Courant Institute, from 1967 to 1970. Courant had
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hoped that Jürgen would serve longer, and was disappointed when Jürgen stepped down
in 1970. When I pointed out that Jürgen disliked the position, he retorted that ‘Jürgen
couldn’t have disliked it that much, for then he couldn’t have done such an excellent job’.

It was Courant who called Jürgen’s attention to the problem of the stability of beams in
particle accelerations such as the synchrotron, one of whose inventors was Courant’s son
Ernest. Stability is an essential point in the construction of these accelerators. For instance,
in the storage ring of the proton accelerator that operated in the 1970s at CERN, protons
proceeding along circular paths were stored for up to 10 hours until they were made to
collide with protons circulating in the opposite direction. During this time the protons
orbited 1010 times around the circular path in a tunnel whose cross section was 16×5 cm2.
If you set the circuit of the protons to a year in the Earth’s path around the sun, 1010 years
surpasses the age of the solar system, so its stability is harder to prove than that of the solar
system. No amount of numerical calculation can shed any light on it. Moser found that
KAM theory shows that the majority of the protons survive circling around 1010 times.

In 1980, Jürgen left the Courant Institute for Zürich. Why is still not clear. He said,
somewhat facetiously, that he did not want to watch his friends grow old; fair enough.
I think that he found the US too disorderly for his taste. In 1970, while Jürgen was director,
a mob claiming to oppose the war in Vietnam occupied the building housing the Courant
Institute and tried (but failed) to burn down its computer. This experience took its toll.

Jürgen did not want to return to Germany. Nazism, the war, and the communist rule
in East Germany, where his parents still lived, was too much baggage. He came to
Zürich when the mathematics department of the ETH was looking for a new appointment.
The leading candidate’s dossier was presented to the President of the ETH, Dr Ursprung.
He demanded assurance about the quality of the person proposed, so he was shown a
glowing letter of recommendation for the candidate from Jürgen. ‘And who is he?’, asked
Ursprung. ‘The best person in the world working on dynamical systems’, he was assured.
‘Then why don’t we get him?’, demanded Ursprung. And get him they did.

Moser’s mathematical interests were very broad. They included the theory of
partial differential equations, spectral theory, dynamical systems, complete integrability,
differential geometry, and complex analysis. He first achieved international recognition in
1960 by his remarkable simplification of the de Giorgi proof of the regularity of solutions of
first-order variational problems for a scalar function of n variables. Later Moser related this
result to a very general inequality of Harnack type for solutions of second-order equations
whose coefficients have very little smoothness.

This work was soon followed by a proof of the existence of invariant curves for
area-preserving transformations of an annulus, and more generally the existence of
quasiperiodic solutions of Hamiltonian systems that are near completely integrable ones.
Moser showed that most solutions, in the sense of measure, are quasiperiodic, provided
that some natural conditions are satisfied:
(i) the unperturbed frequencies ωk have to be rationally independent in the strong sense
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(ii) the Hessian of the unperturbed Hamiltonian with respect to the action variables has

to be non-zero.
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The history of how Moser came to this result bears repeating. Kolmogorov, in 1954,
announced a result of this kind for analytic Hamiltonians in a Doklady note, and then to
the International Congress of Mathematicians in Amsterdam. Mathematical Reviews asked
Moser to review these notes; Moser found no complete proof in either of them; an inquiry
sent to Kolmogorov remained unanswered. So for the next seven years Moser pondered
this problem, and came up with a proof, valid not for analytic Hamiltonians but for the
Ck class. Originally k was chosen to be 333, but ultimately it was whittled down by others
to k = 5; it is known that k has to be greater than 2. The new idea introduced by Moser was
to combine Kolmogorov’s fast iteration with a kind of smoothing invented by John Nash
for the embedding problem and put in a general framework by Jack Schwartz. Moser later
found an approach which gave both the analytic and Ck cases.

Moser was intrigued by the correspondence of Weierstrass with Sonya Kowalevsky,
published in 1973, about the three-body problem. Poincaré has shown that there are
no analytic integrals other than the classical ones. Weierstrass thought that this lack of
integrability did not preclude the existence of quasiperiodic solutions. He even wrote down
an infinite series for such solutions, but he was unable to prove its convergence. Moser was
pleased that his own work had validated the ideas of Weierstrass.

One of the consequences of Moser’s theory is that systems near integrable ones fail to be
ergodic. Doesn’t this shake the foundations of statistical mechanics? Doesn’t the inequality
of time averages and phase averages depend on ergodicity? Jack Schwartz, in an article
titled ‘The deleterious influence of mathematics on the physical sciences’, has pointed out
that ergodicity is indeed needed to show that the time average of every continuous function
is equal to its phase average on the energy surface. But in statistical mechanics we are not
interested in every function, only in those that have thermodynamic significance. These are
very special, highly symmetric functions, whose time averages can be calculated without
resorting to ergodicity.

At the time of Moser’s first contribution to this subject, not many completely integrable
systems were known: Jacobi’s integration of geodesic flow on ellipsoids, Carl Neumann’s
study of the motion under gravity of a particle confined to a sphere, Sonya Kowalevsky’s
top, and a few others. Most people regard them as oddities; but I would like to point
out that completely integrable systems have played crucial roles in science. The complete
integrability of the two-body problem enabled Newton to show how Kepler’s laws are a
consequence of his theory of mechanics and gravitation. In the old Bohr–Sommerfeld
quantum theory, completely integrable Hamiltonian systems could be quantized. This was
sufficient to serve as a stepping stone to the Heisenberg–Schrödinger quantum mechanics
and, in the 1940s, Onsager used the complete integrability of the Ising model to show that
phase transition takes place at a critical temperature.

A new chapter dawned in the 1960s. Toda introduced his anharmonic lattice with an
exponential restoring force, and showed how to represent its solutions explicitly. At about
the same time, Kruskal and Zabusky, in their effort to understand the remarkable numerical
experiments of Fermi, Pasta, and Ulam, discovered even more remarkable properties of
solutions of the Korteweg–de Vries (KdV) equation: the emergence of solitons. Gardner,
Green, and Kruskal have subsequently shown that the KdV equation is Hamiltonian, and
can be integrated using the direct and inverse scattering mechanism. Faddeev and Zakharov
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observed that this shows the complete integrability of the KdV equation. Soon it was
discovered that the KdV equation is only the first of an infinite sequence of completely
integrable equations, called the KdV hierarchy. Thereafter a veritable deluge of completely
integrable systems were discovered: the sine–Gordon equations, the cubic Schrödinger
equation, the Kaç–van Moerbeke lattice, the Boussinesq equation, the Calogero–Moser
system, the Kadomtsev–Petviashvili equation, the Benjamin–Ono equations, and the
Davey–Stewartson equations.

Many of these equations could be put in a form where the integrals appear as the
eigenvalues of a linear operator associated with the solution. Since Moser had a long-
standing interest in the spectral theory of operators, no doubt this added to his fascination
with completely integrable systems. In a series of papers in the 1970s he illuminated a
number of completely integrable systems, and established connections between them.

Numerical experiments were and are a crucial ingredient in studying dynamical systems
and discovering their properties. It was numerical experiments by Fermi, Pasta, and Ulam
that first gave the indication of unexpected almost periodicity of solutions of the perturbed
wave equation. Likewise, numerical experiments gave the first indication to Kruskal and
Zabusky of solitons.

Moser appreciated the necessity of numerical experimentation; he liked to point out that
whereas KAM theory proves the existence of quasiperiodic orbits in a small neighborhood,
only calculations shed light on the actual size of that neighborhood. Moser sometimes
grumbled that some people use computing as a substitute for thinking.

The success of numerical experiments in discovering complete integrability is itself an
example of a KAM-type result. For a numerical experiment never calculates an exact
solution of equations under investigation, only an approximation to it. However, one
can regard the result of the numerical experiment as an exact solution of an approximate
system. Here is a precise formulation.

Consider a one-to-one area-preserving map g of, say, the unit square into itself.
A numerical approximation to g using m digit accuracy must be regarded as mapping each
small square of edge length 10−n into which the unit square is divided onto another such
small square. We require the approximate image of each small square to have a non-zero
intersection with the exact image of that square under g.

The approximate map is area preserving iff it is a permutation of the little squares.
Is there an approximation to g that is a permutation? The answer is yes, and to prove it
we appeal to the Marriage Theorem. That theorem says that if every collection of k little
squares has collectively at least k eligible targets for every k, then a one-to-one match is
possible. The targets eligible to k little squares cover the exact image of these k squares.
Since the area of the exact image under g of k little squares is k×10−2m, at least k squares,
each of area 10−2m, are needed to cover it.

Of course the approximate map is not even continuous, much less Ck , so the classical
KAM theorem is not applicable. But there may be some result that relates the cycle
structure of the approximation to the structure of the orbits of g.

In one of his last papers Moser made an ingenious use of the above approximation
theorem to prove that every area-preserving homeomorphism of the square can be
approximated in the Koopman topology by C∞ diffeomorphisms, which furthermore keep
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the boundary of the square fixed. The Koopman topology is defined in terms of the unitary
operators Ug associated with every homeomorphism g, acting on the L2 functions ω on
the unit square by the formula Ugω(x) = ω(g(x)). A sequence of maps gn converge to g

if Ugn converges strongly in the L2 sense to Ugω.
Jürgen retired from the ETH in full possession of his brilliant qualities; he was expected

to be a very active elder statesman of mathematics for many years to come. It was not to
be. Those of us who knew him and loved him can never come to terms with losing him,
never.


