PUBLICATIONS

DE

L'OBSERVATOIRE ASTRONOMIQUE DE L'UNIVERSITÉ DE TARTU (DORPAT)

TOME XXV № 7

Photographic Observations of the Brightness of Neptune

Second paper:

Variability and Period of Rotation

By

E. Öpik and R. Livländer

						•					
							•				
			•	A	bbrevi	iation	l :				
This	series	of	publications	is	denote letters			sake	by	the	initial
,											
			`								
			K.	Mat	ttieseni	trükk,	Tartus.				

Photographic Observations of the Brightness of Neptune.

Continued from T.P. 25₃ (1923).

1. Arrangement of Observations and Measures.

The method of observation and measurement was fully described in the preceding paper on the same subject 1); so here shall be pointed out only those details in which the present investigation differs from the preceding one.

The diaphragm with the side-holes 2) was placed immediately before the objective, at a distance of about 1 cm; the proportions of the diaphragm remained unchanged. The photographs were taken at an average distance = 2.9 mm extrafocally. The same rotating plate-holder was used as in the preceding year³); with the aid of this plate-holder two fields could be photographed on different places of the same plate, so that each plate might be made equivalent to two independent negatives. Within each field only two neighbouring photographs were obtained; such a small number was chosen with the purpose in view to reduce the danger of superposition of images of other stars on the image of Neptune. The guiding during the exposure was made always by pointing on Neptune, so that the image of the latter appeared in the centre of the field. photographs were all obtained on Hauff Ultra-Rapide plates, Emulsion 10871.

The microphotometer readings and the measurement of the diameter (distance between the side-images) were made exactly in the same manner as described in the first paper 4). As a

¹⁾ T.P. 25₃.

²⁾ Loc. cit. p. 6, fig. 1.

³⁾ Loc. cit. p. 7.

⁴⁾ Loc. cit. pp. 12-16.

measure of the photographic intensity was taken the difference Δ between the microphotometer reading on the extrafocal stellar image and the mean reading on a number of points on the background of the free plate near the image.

All measures with the microphotometer and the general discussion of results were made by E. Ö. All measures of the diameter and the major part of the reductions were made by R. L., and a part of the computations — by Miss A. Piiri.

Table 1 gives the particulars of all photographs. Only clear, transparent and dark nights were chosen for observation. A number of exposures were, nevertheless, not measured, the reason for rejecting being chiefly haze or moonlight. As a rule,

Table 1.

Plate, Field and	Sid. Time	Dura- tion	0b- server	Remarks
Exposure	of Middle			
			Dece	ember 16, 1922.
47 II 1	7 59.8	600s	Ö.	
2	8 16.9	"	,,	$t^0 = -90.5 \text{ C}$
$\begin{array}{ccc} 47 & I & 1 \\ & & 2 \end{array}$	8 35.1 8 52.7	"	,,	20m often last errosses bere
2	8 52.7	"	"	20m after last exposure haze
				ember 18, 1922.
52 II 1 2	$egin{array}{ccc} 6 & 48.6 \ 7 & 02.1 \end{array}$	600	Ö.	·
52 I 1	7 18.2	"	"	
2	7 31.8	"	"	
53 I 1	7 55.8	i	,,	
2	8 11.0	602	"	
53 II 1 2	8 29.2 8 45. 6	600	"	$t^0 = -90.9 \text{ C}$
54 II 1	9 12.4	" "	"	v = -s
2	$9 \ 29.8$	" "	"	
54 I 1	9 47.9	"	,,	
2	10 01.4	"	"	
55 I 1 2	$ \begin{array}{ccc} 10 & 58.2 \\ 11 & 12.0 \end{array} $	"	,,	
55 II 1	11 12.0	"	"	
2	11 41.2	" (?)	,,,	
		,		nuary 23, 1923.
57 I 1	8 20.9	600	Ö.	*
2	8 35.3	"	"	$t^0 = -5^{\circ}.0 \text{ C}$
57 II 1 2	8 51.8 9 07.0	,,	"	Plates 57 and 58 were recorded in
58 II 1	$9 \ 29.3$	**	"	the diary under the same number, so the right order in which they were
2	$9 \ \ 42.8$	"	"	taken is unknown. For this reason
58 I 1	9 59.6	"	,,	both plates were not measured.
2	10 15.9	,,	,,)

Table 1. Continued.

Plate, Field and Exposure	Sid. Time of Middle	Dura- tion	Ob- server	Remarks
	h m		Febru	eary 12, 1923.
64 I 1	6 13.6	611s	L. Ö.	
2 64 II 1	6 32.8 6 48.7	600 800	О.	
2	7 03.1	600	"	
65 II 1	7 26.5	"	"	
2	7 38.8	"	"	
$\begin{array}{ccc} 65 & I & 1 \\ & & 2 \end{array}$	7 53.8 8 08.3	"	"	$t^0 = -12^{\circ}.4 \text{ C}$
$66 I \overline{1}$	8 49.8	600±	Ľ.	U = - 12± ()
2	9 12.8	607		
$\begin{array}{ccc} 67 & I & 1 \\ & & 2 \end{array}$	11 34.8 11 47.6	605(?) 600±	ö.	
67 II 1	12 02.6	$752\pm$	"	
2	12 15.8	600	"	
68 II 1	12 31.2	"	,,	
68 I 1	12 48.8 13 04.3	"	"	
00 1 1	10 01.0	,,	Fobru	omer 19 1009
70 I 1	6 34.5	600	rebru Ö.	ary 13, 1923.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 47.9			
70 II 1	7 03.3	"	"	
2 71 II 1	7 15.5	606	" .	
$\frac{71}{2}$	7 39.6 7 55.7	725	"	
$71 \overline{1}$	8 11.5	600	"	
2	8 24.0	,,,	"	
$\begin{array}{ccc} 72 & 1 & 1 \\ & & 2 \end{array}$	9 18.0 9 38.0	613	1	${ m t^0 = -14^0.5~C}$
73 II 1	11 28.2	600	ö.	
2	11 40.3	,,	,,	
73 I 1	11 54.2	"	"	
2 74 I 1	$egin{array}{cccc} 12 & 06.0 \ 12 & 28.0 \end{array}$	"	"	
2	12 42.0	"	"	
74 II 1	12 55.5	"	"	
2	13 08.0	"	"	
				uary 22, 19 23 .
$\begin{array}{ccc} 75 & I & 1 \\ & & 2 \end{array}$	11 13.3 11 26.5	600	Ö.	$* t^0 = -16^{\circ}.2 C$
75 II 1	11 26.5 11 40.1	"	"	0 = -100.2 G On the exposures marked with *
2	11 53.5	"	"	* falls evidently a superposed image
76 II 1	12 09.0	n	,,	* of a 12—13 magn. star.
2 76 I 1	12 21.2 12 36.0	n	"	
2	12 49.8	7 50	"	*
		•		rch 5, 1923.
77 I 1	7 26.6	600	Ö.	· · · · · · · · · · · · · · · · · · ·
2	7 37.7	750	"	$t^0 = -6^{\circ}.5 \text{ C}$

Table 1. Continued.

		1	1	
Plate, Field and Exposure	Sid. Time of Middle	Dura- tion	Ob- server	Remarks
		7	March 5	, 1923. Continued.
77 II 1	h m 7 53.5	600s	$\ddot{\mathbf{O}}$.	, 1925. Continued.
$\frac{1}{2}$	8 07.1	!	1	
78 II 1	8 28.3	60 4	"	Brightening background) these two
2	8 41.5	602	,,	Moon above horizon from measured.
			\mathbf{M}_{i}	arch 6, 1923.
80 I <u>1</u>	6 57.5	602	Ö.	$t^0 = -12^{\circ}.0 \text{ C}$
2	7 10.4	600	"	(not mea-
80 II 1 2	7 27.0 7 40.8	755 600	"	Haze rapidly forming sured
2	40.8	1 000	"	
01 T 1	0.001	1 400		rch 12, 1923.
81 I 1 2	8 03.1 8 17.0	600	Ö.	
81 II 1	8 32.2	"	"	
$\frac{1}{2}$	8 47.2	"	"	$t^0 = -60.5 \text{ C}$
82 II 1	9 07.3	6Ő1	"	
2	9 20.7	762	"	
82 I 1	9 37.5	600	"	
83 I 1	9 51.0 11 46.0	"	"	
2	11 58.3	. ,	. "	
83 II 1	12 13.8	"	"	During last exposure haze; not measured.
			Ma	arch 13, 1923.
84 I 1	8 13.7	600(?)	Ö.	
2	8 26.7	600±	"	
84 II 1	8 43.4	600	"	10 00 0 G
2 85 II 1	8 56.9	600(?)	"	$t^0 = -2^0.3 \text{ C}$
2	9 21.7 9 35.0	600	"	
85 I 1	9 50.2	606	"	
$\frac{55}{2}$	10 08.3	600	"	
86 I 1	10 29.8	"	"	
2	10 45.8	600±	"	
86 II 1	10 59.9	600	"	
2	11 12.4	"	"	1 15 1000
07 T 1	7 20 7	1 600	Ma Ö. ∣	arch 15, 1923.
87 I 1 2	7 33.7 7 45.8	600	0.	
87 II 1	8 02.5	600(?)	"	Haze not measured
2	8 12.3	251	"	Interrupted by haze
		•	Ma	arch 16, 1923.
88 I 1	7 40.4	600	Ö.	l
2	7 52.9	,	,,	
88 II 1	8 07.0	,,	'n	
2	8 19.7	"	"	·
89 II 1 2	8 36.4 8 50.9	760±	"	$t^0 = 0^{\circ}.0 \text{ C}$
4	0 20.8	100±	"	/ 0° 0°.0 0

Table 1. Continued.

Plate, Field and Exposure	Sid. Time of Middle	Dura- tion	Ob- server	Remarks
89 I 1	h m 9 05.9	600s	March Ö.	16, 1923. Continued.
90 I 1	9 20.4 9 36.6	"	"	
90 II 1 2	9 51.6 10 04.5 10 17.5	"	"	
$\begin{array}{ccc} 91 & I & 1 \\ & & 2 \end{array}$	11 05.4 11 19.9	620± 602	Ľ.	
91 II 1 2 92 I 1	11 39.0 11 56.7 12 20.0	720 600	"	
92 II 1	12 35.0 12 51.1	"	"	
2	13 04.9	"	Ma	arch 18, 1923.
$\begin{array}{ccc} 93 & I & 1 \\ & & 2 \end{array}$	7 45.5 7 57.6	600	Ö.	
93 II 1 2	8 12.4 8 26.6	。" 600 <u>+</u>	"	$t^0 = + 1^{\circ}.2 \text{ C}$
94 II 1 2	8 44.6 8 57.6	600	"	
94 I 1 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	755	"	
95 I 1 2	9 52.1 10 04.9	605 540	"	Interrupted by clouds.
96 I 1	7 51.3	600	ма Ö.	arch 19, 1923. *
$96 \text{ II } \begin{array}{c} 2 \\ 1 \\ 2 \end{array}$	8 02.6 8 17.9 8 32.0	606± 600 600(?)	"	*
97 II 1 2	8 50.4 9 04.7	800	"	$* t^0 = -0^0.8 C$
97 I 1	9 17.7 9 30.7	" "	"	* The exposures marked with * have a partial superposition with a
98 I 1 2 98 II 1	9 50.4 10 03.4 10 17.7	n n	"	* 12 mg. star.
99 I 1	10 17.7 10 30.6 11 10.2	"	" Ľ.	*
99 II 1	11 26.1 11 42.5	"	"	*
100 I 1	11 58.7 12 21.5	720 600	"	*
100 II 1	12 35.6 12 51.9	600 ± 600	"	*
2	13 06.0	n	Ma	arch 20, 1923.
101 I 1 2	8 12.3 8 21.0	600 146	Ö.	Clouds interrupted } not measured

Plate, Field and Exposure	Sid. Time of Middle	Dura- tion	Ob- server	Remarks
102 I 1 2 102 II 1 2 101 II 1 2 103 II 1 2	h m 8 14.4 8 27.3 8 39.7 8 52.0 9 07.8 9 23.8 9 37.7 9 56.0	600s 602 600 "	Ma Ö. """""""""""""""""""""""""""""""""""	Haze, clouds pass. Haze, brightness varying of measured considerably

Table 1. Continued.

those days when it was possible to obtain less than 4 reliable exposures were entirely rejected; so were rejected the observa-tions of March 6 (4 exposures, last hazy), March 15 (4 exposures, last two hazy), March 20 (only 2 exposures); next was rejected every exposure during which the appearance of haze was noted, as on March 12 (last exposure) and March 21 (2 last exposures); the interruption by clouds seemed to offer no reason for rejection, as the disappearance in this case is usually almost instantaneous and hardly influences the difference of brightness of Neptune and the near comparison stars. On account of moonlight and fogged background were rejected 2 exposures on March 5, although the sky was perfectly clear. All exposures of January 23 were also not measured, though taken at apparently perfect conditions; the reason was that because of an error of recording the right order of the plates was unknown, and the plates could not be used for our chief purpose — the investigation of the variability and period of rotation. fore out of the total number of 168 exposures 23 were judged as not worth of measurement, and only the remaining 145 were measured. After measurement no rejection took place, and all these 145 exposures were used with equal weight, as will be shown later on.

2. Reduction of the Measures.

Table 2 contains the data for the comparison stars used, together with the coordinates of Neptune.

Table 2.	Comparison	Stars.
----------	------------	--------

Denotation	В. І	D.	Magn.	1 ^α	923.0		1855.0 α δ		Distance f Neptun Dec. 18 Febr.13		ne	Magnit. adopted (zero- point arbitrary)	Remarks	
	16	053 956 013 011 049 048 095 0ec.	8.0 8.2 8.5 8.5 8.0 8.2 7.2 8.5	9 13 9 18 9 12 9 12 9 23 9 23 9 24 9 22 9 16	+16°.3 17 .0 16 .1 15 .4 15 .3 14 .8 15 .2 14 .6	9 9 9 9	m 06.9 09.6 14.7 08.2 07.9 18.9 18.8 19.0 20.4	+16 ⁰ 17 16 15 15 15 14 15	19 24 42 37	mm 13.0 11.2 5.5 13.9 7.9	mm 19.4 16.9 7.0 17.1 18.8 — 23.2 —	mm 8.9 10.3 17.3 12.6 14.5 — —	9.457 9.196 8.757 9.557 8.919 8.853 9.471 9.099 9.735	Variable (eclipsing?) Gött. Act. 1369;m=7.99

The first column of this table gives the letter by which the star is denoted in the following discussion; the second and third columns — the number and magnitude according to the B. D. The 8th, 9th and 10th columns give the distance of the star from Neptune for three principal dates of observation; the distances were directly measured on the plate and are expressed in mm: a vacant place in the column of distance indicates that the star was out of the field (of about 50 mm diameter) and could not The 11th column contains the finally adopted magnitudes of the stars, reckoned from an arbitrary zero-point and derived from the photographs themselves; the method of deriving these magnitudes will be explained below. The star p proved to be a variable; its variation of a range of about 0.4 mg. was observed only on 1 day, March 19, when it showed a minimum during 4 hours; on all other days it remained practically constant, with a mean square deviation of only ± 0.06 mg.; it was therefore used as a comparison star on all days except March 19; the magnitude adopted for p refers to the normal state, the minimum not being taken into account 1).

The correction for varying distance from the focus was applied as explained in the first paper 2). Besides irregularities produced by occasional curvature of the plate, there should be

¹⁾ For particulars concerning this star consult the Appendix.

²⁾ Loc. cit. pp. 13-17.

expected a systematical error in the brightness depending on the distance from the centre and due chiefly to optical distorsion; indeed near the edge of the field the extrafocal images became elliptical; nevertheless our method of measuring diameters in two perpendicular directions proved to be excellent from this standpoint also, since this source of error was authomatically eliminated: photographs of the North Polar Sequence and measures of the comparison stars used in the present investigation indicated that after applying the correction for diameter there remained no residual systematic error as great as 0.01 st. mg. for distances varying from 0 to 25 mm from the centre of the field; such a result could be expected a priori since the two perpendicular diameters give a measure of the area of the ellipse (the excentricity being small); on the other hand, this area represents the reciprocal of the surface brightness.

The correction for atmospherical absorption was computed on the assumption of a constant coefficient of absorption, γ , throughout all measures; the value $\gamma = 0.50$ st. mg. per unit of air-mass was adopted. Table 3 was computed which allowed of finding the differential absorption directly from the differences in right ascension and declination for a given hour-angle.

Table 3. Differential Absorption for $\delta = +13^{\circ}....+17^{\circ}$ and $\varphi = +58^{\circ}.4$

Hour-Angle	<u>+</u> Oh	± 1h	<u>+</u> 2h	<u>+</u> 3h	<u>+ 4</u> h
Differential $\Delta \delta = +1^{\circ}$ Absorption (st. mg.) for $\Delta \alpha = +1^{\text{m}}$		—0.011 ∓0.0005	-0.013 -0.0011	-0.017 -0.0021	—0.026 ∓0.0038

The convertion of the microphotometer readings into stellar magnitudes was made with the aid of data furnished by 7 extrafocal photographs of the North Polar Sequence made for another purpose 1) on plates of the same sort and emulsion; the
circumstances under which these photographs were taken and
developed correspond very nearly to the average conditions for
the photographs of Neptune and the same diaphragm was used.
As the data for the N. P. S. will appear in extenso in a future
publication, we shall give here only the final result. Table 4

¹⁾ Photometry of globular clusters and spiral nebulae.

gives the stellar magnitude, m, corresponding to a given photographic density, Δ (difference of image and background); the zero-point of magnitudes is quite arbitrary. The magnitudes of the N. P. S. used in deriving this table were adopted according to Fr. H. Seares 1).

Table 4.

	0.10		0.20												
7/1	(10.89)	(10.70)	(10.54)	10.40	10.40	10.17	10.00	9.90	9.00	9.04	9.47	9.50	9.15	9.00	0.01

 1.20
 1.30
 1.40
 1.50
 1.60
 1.70
 1.80
 1.90
 2.00
 2.10
 2.20
 2.30
 2.40
 2.50
 2.60
 2.70
 2.80
 2.90

 m
 8.75
 8.63
 8.51
 8.28
 8.14
 8.00
 7.86
 7.72
 7.58
 7.45
 7.33
 7.19
 7.05
 6.91
 6.78
 6.64
 6.50

The curve represented by the function $m = f(\Delta)$ is a pseudo-hyperbola. On a few days a systematic deviation was perceptible, which was eliminated by taking instead of the preceding formula the following:

$$m' = k f(\Delta) = km,$$

k being a constant factor. It may be remarked here that for the whole series of photographs of Neptune there could be detected no trace of variation in k; therefore k was assumed equal to 1 and the magnitudes were read directly from an extension of table 4 (interpolated for every 0.01 of Δ).

The exposures of the N.P.S. ranged from 10 to 90 minutes; the photographs were centred on a Ursae Minoris and the following stars were used:

The r (red) stars gave a systematic deviation from the mean curve of -0.006 st. mg., which is negligible, so that the colour-sensitiveness of the system objective — plate was essentially the same in the present observations as in the adopted magnitudes of the N. P. S.

Table 5 contains the result of measurement of the plates. The first column gives the denotation of the star; n means Neptune, and n_0 refers to the concluded brightness of the planet. The second column gives the mean diameter, in 0.001 mm; for Neptune it is usually the average of 8, and for the comparison stars — of 4 separate measures. The next two columns contain the corrections for diameter and absorption expressed

¹⁾ Transactions of the International Astronomical Union, vol. I (1922), p. 71.

$\mathbf{T}\mathbf{a}\mathbf{b}$	lе	5.	
Negati	v e	47,	II.

		Co	rr.		1.	Image			$\overline{}$ 2.	Image		
	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	m_0-m	Dev.	
w z a i r Mean	458 467 467 464 422	+0.009 +0.052 + .052 + .038 159	$\begin{array}{c c} + .009 \\ + .012 \\ + .002 \end{array}$	0.78 1.12 0.99 0.55 1.40	9.316 8.789 8.956 9.710 8.676	+0.16 + .06 + .14 + .02 + .08 + 0.092	$ \begin{array}{r} -3 \\ +5 \\ -7 \\ -1 \end{array} $	0.63 0.97 0.86 0.54 1.29	9.576 8.889 9.146 9.730 8.806	-0.10 04 05 .00 05 -0.048	$+1 \\ 0$	
n	456	0.000	0.000	0.96	9.060			0.83	9.260			
n_0			-			9.152		9.212				

Negative 47, I.

		Co	orr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	m_0 — m	Dev.
$w \ z \ lpha \ i \ r \ \mathrm{Mean}$	475 479 474 485 460	$ \begin{vmatrix} -0.013 \\ + .005 \\018 \\ + .031 \\080 \end{vmatrix} $	+0.005 + .009 + .011 + .002 007	0.60 0.94 0.73 0.46 1.14	9.648 9.076 9.427 9.900 8.907	-0. 18 22 33 16 15 -0.208	$ \begin{array}{c} -12 \\ -12 \\ +5 \end{array} $	$0.54 \\ 1.26$	9.548 8.896 9.207 9.740 8.767	-0.08 -0.04 -0.00 -0.01 -0.046	$ \begin{array}{r} -3 \\ +1 \\ -6 \\ +5 \\ +4 \\ \pm 0.018 \end{array} $
n	478	0.000	0.000	0.78	9.330			0.95	9.080		
n_0		-	_	9,122			9,034				

Negative 52, II.

		Co	Corr.		1.	Image			2.	Image	
	d	diam.	abs.	Δ	m	m_0 — m	Dev.	⊿	m	m_0 — m	Dev.
w z α i r Mean	425 430 429 429 398	+0.062 + .088 + .083 + .083 078	+0.007 $+0.013$ $+0.015$ $+0.004$ -0.013	0.89 1.29 1.14 0.66 1.54	9.101 8.540 8.720 9.450 8.441	+0.38	$\begin{array}{c c} -2 \\ +5 \\ -5 \\ -1 \end{array}$	0.95 1.32 1.13 0.70 1.52	9.011 8.510 8.730 9.380 8.461	+0.46 $+ .34$ $+ .37$ $+ .35$ $+ .30$ $+0.364$	— 6
n	413	0.000	0.000	1.13	8.830	I —		1.14	8.820	_	
n_0		—		9.162				9.184			

Negative 52, I.

		Co	rr.		1.	Image	·		2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	m ₀ —m	Dev.
$\begin{bmatrix} w \\ z \\ a \\ i \\ r \\ Mean \end{bmatrix}$	461 460 462 463 443	+0.014 + .009 + .019 + .023 070	$ \begin{array}{r} +0.006 \\ + .011 \\ + .014 \\ + .003 \\011 \end{array} $	0.73 1.09 0.99 0.58 1.40	9.400 8.860 8.987 9.654 8.591	+0. 07 -0. 01 +0. 11 +0. 08 +0. 17 +0.084	$ \begin{array}{c c} -9 \\ +3 \\ 0 \\ +9 \end{array} $	0.74 1.13 0.93 0.55 1.42	9.380 8.810 9.077 9.724 8.571	+0. 09 +0. 04 +0. 02 +0. 01 +0. 19 +0.070	$ \begin{array}{r} -3 \\ -5 \\ -6 \\ +12 \end{array} $
\overline{n}	45 8	0.000	0.000	1.03	8.960			1.06	8.920	<u> </u>	
n_0				9.044			8.990				

Table 5. Continued. Negative 53, I.

		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	m_0 — m	Dev.
$egin{array}{c} w \ z \ lpha \ i \end{array}$	484 476 480	+0.022 013 + .004	$\begin{array}{c c} + .012 \\ + .012 \end{array}$	$0.96 \\ 0.77$	9.562 9.059 9.334	-0.21 -0.23	- 1 - 3	$0.98 \\ 0.82$	9.612 9.029 9.254	$\begin{bmatrix} -0 & .14 \\ -0 & .18 \\ -0 & .15 \end{bmatrix}$	-4 -1
r Mean	487 461 —	+ .036 080 -	$\begin{vmatrix} + .002 \\009 \\ \end{vmatrix}$	0.40 1.12 —	10.022 8.939 —		+2	0.46 1.22 —	9.892 8.819 —	$ \begin{array}{c c} -0 & .16 \\ -0 & .06 \\ -0.138 \end{array} $	$-2 \\ +8 \\ \pm 0.018$
n	479	0.000	0.000	0.84	9.240			0.81	9.290		
n_0			_	9.040				9.152			

Negative 53, Il.

		Co	Corr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	m_0-m	Dev.
w z a i r Mean	458 463 463 459 417	$\begin{vmatrix} +0.058 \\ +0.082 \\ +0.082 \\ +0.062 \\ -0.139 \\ -$	800. 🕂	0.69 1.02 0.81 0.52 1.24	9.427 8.880 9.197 9.746 8.844	+0. 04 -0. 03 -0. 10 -0. 01 -0. 09 - 0.038	+1 6 +3 5	0.66 1.03 0.83 0.55 1.24	9.477 8.870 9.167 9.686 8.844	$\begin{bmatrix} -0. & 02 \\ -0. & 07 \end{bmatrix}$	$\begin{array}{r} -4 \\ +8 \\ -6 \end{array}$
n	446	0.000	0.000	0.82	9.270	· —		0.90	9.150	_	
$\overline{n_0}$		<u> </u>		9.232			9.122				

Negative 54, II.

		Co	rr.	1. Image					2.	Image	
į	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	m_0-m	Dev.
$w \\ z \\ \alpha \\ i \\ r \\ \mathrm{Mean}$	426 436 436 428 394	$ \begin{array}{r} +0.041 \\ +0.092 \\ +0.092 \\ +0.051 \\ -0.123 \end{array} $	+0.004 + .008 + .010 + .001 005	1.28 1.02 0.67	9.225 8.550 8.868 9.468 8.518	+0. 25 +0. 30 +0. 23 +0. 27 +0. 24 + 0.258	$ \begin{array}{r} +4 \\ -3 \\ +1 \\ -2 \end{array} $	0.57 1.47	9.195 8.580 8.848 9.648 8.558	+0. 28 +0. 27 +0. 25 +0. 09 +0. 20 +0.216	$\begin{array}{c c} +5 \\ +3 \\ -13 \\ -2 \end{array}$
\overline{n}	418	0.000	0.000	1.10	8.870			1.06	8.920		
n_0				9.128				9.136			

Negative 54, I.

		Co	orr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	m_0-m	Dev.
w z a i r Mean	444 439 437 444 437	+0.019 005 015 + .019 015	+0.004 + .008 + .010 + .001 005	0.83 1.32 1.09 0.57 1.38	9.237 8.607 8.885 9.680 8.550	+0. 23 +0. 25 +0. 22 +0. 05 +0. 21 + 0.193	$\begin{array}{c} + 6 \\ + 3 \\ -14 \\ + 2 \end{array}$	1.43	9.247 8.647 8.905 9.590 8 490	+0.27	$ \begin{array}{r} +1 \\ 0 \\ -1 \\ -7 \\ +6 \\ +0.019 \end{array} $
n	440	0.000	0.000	1.05	8.940	<u> </u>		1.04	8.950		
n_0				9.133				9.158			

Table 5. Continued.

Negative 55, I.

		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	m_0 — m	Dev.	⊿	m	m_0-m	Dev.
w z a i r Mean	461 467 468 454 459	$ \begin{vmatrix} -0.005 \\ + .023 \\ + .028 \\037 \\014 \end{vmatrix} $	+0.002 + .008 + .011 + .000 003	$0.92 \\ 0.77$	9.089 9.311	-0. 21	$\begin{array}{c c} +4 \\ +7 \\ -2 \\ -6 \end{array}$	1.09	8.959 9.191 9.697	$\begin{array}{c} -0. & 15 \\ -0. & 11 \\ -0. & 09 \\ +0. & 04 \\ -0. & 14 \\ -0.090 \end{array}$	$ \begin{array}{r} -6 \\ -2 \\ 0 \\ +13 \\ -5 \\ \pm 0.013 \end{array} $
n	4 62	0.000	0.000	0.76	9.370			0.86	9.210	_	
n_0				9.088				9.120			

Negative 55, II.

		Co	Corr.		1.	Image			2.	Image	
	d	diam.	abs.	Δ	m	m_0-m	Dev.	Δ	m	m_0 — m	Dev.
w z a i r Mean	389 392 388 (391) 409	$ \begin{array}{c c} -0.048 \\ -0.032 \\ -0.054 \\ (-0.049) \\ +0.059 \end{array} $	+0.002 + .010 + .012 001 002	1.06 1.00 0.61	9.536 8.942 9.042 9.670 8.823	-0. 06 -0. 09 +0. 06 +0. 06 -0. 06 - 0.018	+8 -4	$0.97 \\ 0.62 \\ 1.04$	8.842 9.092 9.660	$\begin{array}{c} -0. & 06 \\ +0. & 01 \\ +0. & 01 \\ +0. & 07 \\ -0. & 13 \\ -0.020 \end{array}$	$ \begin{array}{r} -4 \\ +3 \\ +3 \\ +9 \\ -11 \\ +0.022 \end{array} $
n	3 98	0.000	0.000	0.89	9.170			0.91	9.140		
n_0		_		9.152			9.120				

Negative 64, I.

		Co	Corr.		1.	Image			2.	lmage	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	1	m	m_0-m	Dev.
r w t s m p Mean	490 505 467 461 464 470	$\begin{array}{c c} +0.013 \\ +0.079 \\ -0.088 \\ -0.114 \\ -0.101 \\ -0.075 \\ -\end{array}$	+0.002 + .029 + .004 + .001 016 023		8.625 9.452 8.854 9.503 9.357 9.048	+0. 13 +0. 02 +0. 06 +0. 05 +0. 10 +0. 15 + 0.085	$ \begin{array}{c} -6 \\ -2 \\ -4 \\ +1 \\ +6 \end{array} $	0.71 0.85 1.02	9.332 8.824 9.563 9.347	+0. 09 +0. 14 +0. 09 -0. 01 +0. 11 +0. 13 +0.092	$\begin{vmatrix} +5 \\ 0 \\ -10 \\ +2 \\ +4 \end{vmatrix}$
n	487	0.000	0.000	1.02	8.970			1.01	8.990	_	
n_0		-		9.055			9.082				

Table 5. Continued.

Negative 64, II.

		Co	Corr.		1.	Image			2.	Image	
	d	diam.	abs.	Δ	m	m_0-m	Dev.	⊿	m	m ₀ m	Dev.
r	462	+0.023	+0.002	1.61	8.245	+0. 51	+1	1.36	8.535	+0. 22	-2
$rac{t}{s}$	448 450	-0.042 0.033	+0.002			+0. 52 +0. 46	$^{+2}_{-4}$	0.85	9.263	+0.26 +0.29	+5
$egin{array}{c} m \ p \ \mathrm{Mean} \end{array}$	(442) 430 —	$\begin{array}{c c} (-0.117) \\ -0.126 \\ -\end{array}$	$ \begin{array}{c c} -0.013 \\ -0.020 \\ - \end{array} $	1.38 —	8.676	+0.52 +0.502		1.11	9.220 9.006 —		5
\overline{n}	457	0.000	0.000	1.22	8.730	_	—	1.12	8.850		
$\overline{n_0}$				9.232			9.090				

Negative 65, II.

-		Co	rr.		1.	lmage			2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	m_0-m	Dev.
$r \\ w$	427	+0.025	-0.001	1.55	8.316	+0. 44	—3	1.56	8.296	+0. 46	-4
$egin{array}{c} w \\ t \\ s \\ m \\ p \\ ext{Wean} \end{array}$	404 405 393 393	091 086 147 147	+0.004 + .003 008 013	1.07	1	+0. 39 +0. 56 +0. 49 +0. 46 + 0.468	$+9 \\ +2 \\ -1$	1.09 1.20 1.33	8.447 8.963 8.905 8.750	+0.55 +0.45	$+9 \\ +5$
\overline{n}	422	0.000	0.000	1.30	8.630		_	1.36	8.560		
n_0			<u> </u>	9.098				9.064			

Negative 65, I.

		Co	rr.		1.	lmage			2.	Image	
	d	diam.	abs.	Δ	m	m_0-m	Dev.	⊿	m	m_0-m	Dev.
r w t s m p Mean	478 484 448 451 446 463	$\begin{array}{c c} +0.050 \\ +0.078 \\ -0.087 \\ -0.073 \\ -0.091 \\ -0.018 \\ -\end{array}$	0.00° $+0.016$ $+0.005$ $+0.004$ -0.009 -0.016	1.37	8.410 9.346 8.632 9.279 9.090 8.834	+0. 35 +0. 12 +0. 29 +0. 28 +0. 37 +0. 36 + 0.295	$ \begin{array}{c c} -18 \\ -1 \\ -2 \\ +7 \\ +6 \end{array} $	0.80 1.42 0.90 1.05 1.22	9.219 9.040	+0. 29 +0. 27 +0. 35 +0. 34 +0. 42 +0. 43 +0.350	$ \begin{array}{c c} -8 \\ 0 \\ -1 \\ +7 \\ +8 \end{array} $
\overline{n}	467	0.000	0.000	1.14	8.820		_	1.16	8.800	_	_
n_0				9.115				9.150			

Table 5. Continued.

Negative 66, I

		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	Δ	m	m_0-m	Dev.	⊿	m	m_0 — m	Dev.
$egin{array}{c c} r & w & t & s & m & p & \\ m & p & & & & & & & & & & & & & & & & &$	464 459 448 447 447	$\begin{array}{r} +0.033 \\ +0.009 \\ -0.042 \\ -0.047 \\ -0.047 \\ +0.019 \\ -\end{array}$	$\begin{array}{r} -0.001 \\ +0.007 \\ +0.007 \\ +0.006 \\ -0.003 \\ -0.010 \\ -0.003 \\ -0.010 \\ -0.003 \\ -0.010 \\ -0.003 \\ -0.000 \\ -0.00$,	8.428 9.104 8.585 9.121 9.080 8.891	+0. 37 +0. 33 +0. 44 +0. 38 +0. 31	+1 -3 $+8$ $+2$	1.44 0.93 1.36 0.99 1.02 1.13	8.428 9.094 8.595 9.061 9.020 8.821	$\begin{array}{c cccc} +0. & 32 \\ +0. & 50 \\ +0. & 44 \\ +0. & 38 \end{array}$	$ \begin{array}{r} -1 \\ -7 \\ +11 \\ +5 \end{array} $
\overline{n}	457	0.000	0.000	1.24	8.700	<u> </u>		1.23	8.710		
n_0		_		9.060				9.102			

Negative 67, I.

1		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	Δ	m	m_0 — m	Dev.	⊿	m	m_0-m	Dev.
r w t s m p Mean	457 445 477 472 474 466	$ \begin{array}{r} +0.014 \\ -0.042 \\ +0.108 \\ +0.085 \\ +0.094 \\ +0.057 \end{array} $	$\begin{array}{c} -0.005 \\ +0.002 \\ +0.017 \\ +0.015 \\ +0.003 \\ -0.010 \\ -0.010 \\ \end{array}$	1.51 1.18 1.43 0.80 0.87 1.04	8.371 8.810 8.345 9.200 9.103 8.903		$ \begin{array}{r} +22 \\ +13 \\ -8 \\ -9 \\ -15 \end{array} $	1.04 1.34 0.84 0.85 1 .11	8.311 8.990 8.455 9.140 9.133 8.813	$\begin{vmatrix} -1 & 0.46 \\ -0.42 \\ -0.32 \\ -0.38 \end{vmatrix}$	$\begin{array}{ c c c c } + 6 \\ + 4 \\ 0 \\ -10 \end{array}$
n	454	0.000	0.000	1.24	8.700	_		1.28	8.650		
n_0	_		_	9.137			9.068				

Negative 67, II.

		Co	Corr.		1.	lmage			2.	Image	
	d	diam.	abs.	⊿	m	m ₀ —m	Dev.	⊿	m	m_0-m	Dev.
r w t s m p Mean	425 380 431 440 455 460	$\begin{array}{c c} -0.020 \\ -0.244 \\ +0.010 \\ +0.055 \\ +0.129 \\ +0.154 \\ -\end{array}$	$\begin{array}{c} -0.006 \\ 0.000 \\ +0.020 \\ +0.018 \\ +0.004 \\ -0.011 \\ -0.011 \end{array}$	1.76 1.31 1.47 0.94 0.90 1.17	8.086 8.866 8.400 9.017 9.017 8.647	+0.67 $+0.61$ $+0.52$ $+0.54$ $+0.44$ $+0.55$	$ \begin{array}{c} -3 \\ -2 \\ -11 \\ -1 \end{array} $	1.12 1.32 0.91 0.83 1.06	8.306 9.094 8.580 9.067 9.127 8.777 —	+ 0. 45 +0. 38 +0. 34 +0. 49 +0. 33 +0. 42 + 0.402	$ \begin{array}{c c} -2 \\ -6 \\ +9 \\ -7 \\ +2 \end{array} $
n	429	0.000	0.000	1.35	8.570			1.23	8.710	l —	
n_0					•	0.125			3	0.112	

Table 5. Continued.

Negative 68, II.

W		Co		1.	Image			2.	Image		
	d	diam.	abs.	Δ	m	m_0-m	Dev.	Δ	m	m ₀ —m	Dev.
r w t s m p Mean	437 (441) 444 446 457 458	$ \begin{array}{r} -0.015 \\ +0.004 \\ +0.019 \\ +0.029 \\ +0.083 \\ +0.087 \end{array} $	$\begin{array}{c c} -0.009 \\ -0.004 \\ +0.026 \\ +0.024 \\ +0.007 \\ -0.013 \end{array}$	0.94 1.25 0.78 0.81	8.494 9.090 8.645 9.277 9.200 8.956		+10	0.81 1.21 0.81 0.75 0.99	9.290 8.695 9.237 9.300	+0. 17 +0. 18 +0. 22 +0. 32 +0. 16 +0. 25 + 0.222	+10
n	44 0	0.000	0.000	1.20	8.750	i —		1.17	8.790		
n_0				9.032			9.012				

Negative 68, 1.

		Co	rr.		1.	mage	
	d	diam.	abs.	⊿	m	m ₀ m	Dev.
r w t s m p Mean	487 476 496 495 490 489	$ \begin{array}{r} +0.031 \\ -0.018 \\ +0.071 \\ +0.067 \\ +0.045 \\ +0.041 \\ -0.001 \\ \end{array} $	$\begin{array}{r} -0.008 \\ -0.006 \\ +0.028 \\ +0.026 \\ +0.017 \\ -0.017 \\ -0.017 \\ -0.008 \\ \end{array}$	1.21 0.68 1.06 0.66 0.71 0.85	8.717 9.524 8.821 9.447 9.395 9.206	$\begin{array}{c cccc} +0. & 04 \\ -0. & 05 \\ +0. & 10 \\ +0. & 11 \\ +0. & 06 \\ -0. & 01 \\ +\textbf{0.042} \end{array}$	$ \begin{array}{c c} -9 \\ +6 \\ +7 \end{array} $
n	4 80	0.000	0.000	0.90	9.150		
n_0		_		9.192			

Negative 70, I.

		Co	orr.		1.	Image		The second secon	2.	Image	
	d	diam.	abs.	Λ	m	m_0 — m	Dev.	Δ	m	m_0-m	Dev.
r w t s m p Mean	458 455 431 430 438 452	+0.043 + .029 086 090 052 + .014	+0.002 + .024 + .004 + .002 009 020	0.76	8.525 9.317 8.642 9.268 8.931 8.996	+0.15	$ \begin{array}{c c} -13 \\ 0 \\ +1 \\ +25 \\ -8 \end{array} $	0.75 1.39 0.86 0.94 1.04	8.602 9.298 9.151	+0. 19 +0. 13 +0. 32 +0. 26 +0. 31 +0. 24 +0.242	$ \begin{array}{r} -11 \\ +8 \\ +2 \\ +7 \\ 0 \end{array} $
n	449	0.000	0.000	1.08	8.900			1.15	8.810	_	
n_0				9.180			9.052				

Table 5. Continued.

Negative 70, II.

		Co	rr.		1.]	mage			2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	4	m	m ₀ —m	Dev.
$r \\ iv$	392	+0.056	+0.002	1.65	8.152	+0. 61	+ 4	1.57	8.252	+0. 51	_ 1
$egin{array}{c} w \ t \ s \ m \ p \end{array}$	371 374 361 367	062 045 118 084	$\begin{array}{c} + .004 \\ + .003 \\010 \\017 \end{array}$	1.14	8.862 8.758	+0. 34 +0. 69 +0. 70 +0. 52	$+12 \\ +13 \\ -5$	1.00 1.26	8.498 9.042 8.808	+ 0.65	$-1 \\ +13$
Mean						+0.572	<u>+</u> 0.037			+0.522	<u>+0.037</u>
n	382	0.000	0.000	1.43	8.470	[1.38	8.530		
n_0		_		9.042				9.052			

Negative 71, II.

		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	Δ	m	m_0 — m	Dev.
$\begin{bmatrix} r \\ w \end{bmatrix}$	511	+0.069	0.000	1.35	8.501	+0. 26	+ 3	1.59	8.221	+0. 54	_2
t s m p Mean	477 474 451 458	078 091 190 160	+0.005 + .004 008 014		8.660 9.297 9.188 9.114	+0. 26 +0. 26 +0. 27 +0. 08 + 0.226	$\begin{array}{c} + 3 \\ + 4 \\ -15 \end{array}$	1.06 1.25 1.37	8.270 9.007 8.888 8.724		$\begin{array}{c c} -1 \\ +1 \\ -9 \end{array}$
$\frac{mean}{n}$	495	0.000	0.000	1.08	8.900	'			8.530	-	
$\overline{n_0}$		1		9.126				9.086			

Negative 71, I.

		Co	Corr.		1.	Image			2.	Image	
	d	diam.	abs.	Δ	m	m_0 — m	Dev.	⊿	m	m.,—m	Dev.
r w t s m p Mean	518 540 495 485 486 495	+0.017 + .108 079 121 116 079	$\begin{array}{r} -0.004 \\ + .012 \\ + .006 \\ + .005 \\006 \\013 \\ - \end{array}$		8.577 9·270 8.773 9.436 9.292 8.972	+0. 18 +0. 20 +0. 14 +0. 12 +0. 16 +0. 22 +0.170	+3 -3 -5 -1 +5	0.78 1.28 0.80 0.88 1.14	8.723 9.416	+0.28	$\begin{array}{c c} +4 \\ -2 \\ -8 \\ -7 \end{array}$
n	514	0.000	0.000	1.16	8.800			1.08	8.900	<u> </u>	
n_0		_			5 8	3.970			£).122	

Table 5. Continued.

Negative 72, I.

		Co	Corr.			Image			2.	Image	
	d	diam.	abs.	Δ	m	m_0-m	Dev.	⊿	m	m_0-m	Dev.
r w t s m p Mean	446 456 433 424 424 437	+0.014 + .063 048 092 092 029	$\begin{array}{c} -0.001 \\ + .008 \\ + .007 \\ + .006 \\003 \\010 \\ - \end{array}$	1.68 0.98 1.59 1.07 1.22 1.36	8.157 8.959 8.331 8.996 9.825 8.599	+0. 60 +0. 51 +0. 59 +0. 56 +0. 63 +0. 60 + 0.582	$ \begin{array}{c c} & -7 \\ & +1 \\ & -2 \\ & +5 \\ & +2 \end{array} $	1.68 1.03 1.63 1.07 1.24 1.38	8.889 8.281 8.996 8.795	+0. 60 +0. 58 +0. 64 +0. 56 +0. 66 +0. 63 +0.612	$ \begin{array}{c c} -3 \\ +3 \\ -5 \\ +5 \end{array} $
n	44 3	0.000	0.000	1.45	8.450	-		1.36	8.560		<u> </u>
n_0		_	_	9.032				9.172			

Negative 73, II.

		Co	rr.		1.	Image		2. Image			
	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	m_0-m	Dev.
$r \\ w$	547	+0.012	-0.004	1.16	8.792	_0. 03	+3	1.19	8.752	+0. 01	+8
$egin{array}{c} t \ s \end{array}$	512 516	$\begin{bmatrix} -0.126 \\110 \end{bmatrix}$	+0.015 + .014	$\frac{1.06}{0.68}$	9.031 9.596	$\begin{bmatrix} -0. & 11 \\ -0. & 04 \end{bmatrix}$		$\frac{1.10}{0.62}$	8.981 9.706	$\begin{bmatrix} -0. & 06 \\ -0. & 15 \end{bmatrix}$	$^{+1}_{-8}$
$p \\ \mathrm{Mean}$	530	055 -	— <u>.</u> 010	0.88	9.245	-0. 05 - 0.056		0.87		$\begin{bmatrix} -0.07 \\ -0.067 \end{bmatrix}$	
n	544	0.000	0.000	0.81	9.290			0.90	9.150	_	
n_0			_	9.234			9.083				

Negative 73, I.

		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	Δ	m	m_0-m	Dev.	4	m	$ m_0-m $	Dev.
$r \\ w \\ t \\ s \\ m \\ p \\ ext{Mean}$	572 580 535 523 534 552	+0.042 + .072 099 145 103 034	$ \begin{vmatrix} -0.005 \\ 0.000 \\ + .017 \\ + .017 \\ + .004 \\011 \end{vmatrix} $	1.07 0.57 1.04 0.59 0.71 0.80	8.873 9.628 9.032 9.788 9.549 9.345		$ \begin{array}{r} -2 \\ +3 \\ -9 \\ +5 \\ -1 \end{array} $	$ \begin{array}{r} 1.00 \\ 0.62 \\ 0.66 \\ 0.82 \end{array} $	9.628 9.082 9.738 9.639	-0.16	$ \begin{array}{c c} -1 \\ -1 \\ -3 \\ -3 \\ +3 \end{array} $
n	561	0.000	0.000	0.83	9.260			0.90	9.150		
n_0				9.117				9.002			

Table 5. Continued.

Negative 74, I.

		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	m ₀ m	Dev.	⊿	m	m_{o} — m	Dev.
r w t s m p Mean	458 446 477 482 490 477	$\begin{array}{r} -0.041 \\ -0.096 \\ +0.046 \\ +0.069 \\ +0.105 \\ +0.046 \\ -0.046 \\ \end{array}$	$\begin{array}{c} -0.007 \\ -0.003 \\ +0.025 \\ +0.023 \\ +0.007 \\ -0.012 \\ -0.007 \\ -0.0007 \\ -0.0000 \\ -0.0000 \\ -0.00000 \\ -0.00000 \\ -0.00000 \\ -0.00000 \\ -0.000000 \\ -0.000000 \\ -0.0000000 \\ -0.000000000 \\ -0.0000000000$	1.12 0.73 0.70	8.638 9.269 8.779 9.328 9.358 9.106		$ \begin{array}{r} +5 \\ -1 \\ +8 \\ -5 \\ -6 \end{array} $	0.95 1.16 0.72 0.74 0.91	8.729 9.348	$\begin{vmatrix} +0. & 29 \\ +0. & 19 \\ +0. & 21 \end{vmatrix}$	$\begin{array}{c c} +11 \\ +1 \\ +3 \\ -1 \\ -9 \end{array}$
n	467	0.000	0.000	1.08	8.900			1.10	8.870	_	
n_0				9.047			9.052				

Negative 74, II.

		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	m_0-m	Dev.
r w t s m p Mean	435 447 443 464 465	$ \begin{array}{r} -0.029 \\ +0.029 \\ +0.010 \\ +0.0$	$\begin{array}{c c} -0.009 \\ +0.030 \\ + .028 \\ + .011 \\014 \end{array}$	1.12	8.791 9.352 9.297	+0 16	$ \begin{array}{c} -3 \\ +4 \\ 0 \\ -1 \end{array} $	1.20 ().70 ().74 ().92	8.648 8.691 9.432 9.277 9.018	+0. 11 +0. 23 +0. 12 +0. 18 +0. 18 + 0.164	$\begin{array}{c c} +7 \\ -4 \\ +2 \\ +2 \end{array}$
n	441	0.000	0.000	1.0)	9.000	i —		1.05	8.940		
n_0					Ę).16 0				0.104	

Negative 75, I.

		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	Δ	m	m_0-m	Dev.	⊿	m	m_0 — m	Dev.
$egin{array}{c} t & s & \\ m & p & \\ r & \\ ext{Mean} & \end{array}$	534 537 546 541 517	0.000 + .012 + .048 + .028 068	+0.013 + .012 + .001 010 003	$0.60 \\ 0.62 \\ 0.72$		-0. 15 -0. 06 -0. 10 -0. 23 -0. 34 -0.176	$+12 \\ +8 \\ -5 \\ -16$	$0.66 \\ 0.76 \\ 0.99$	9.696 9.491 9.352	-0. 16 -0. 14 -0. 03 -0. 16 -0. 33 -0.164	$\begin{array}{c c} +2\\ +13\\ 0 \end{array}$
n	534	0.000	0.000	0.81	9.290	_		0.84	9.240		
n_0				9.114			9.076				

Table 5. Continued. Negative 75, II.

		Co	Corr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	m_0-m	Dev.
$egin{array}{c} t \ oldsymbol{s} \end{array}$	494 489	$\begin{bmatrix} -0.026 \\ -0.047 \end{bmatrix}$	+0.017 + .015		9.522	$ \begin{array}{c cccc} -0. & 06 \\ +0. & 03 \end{array} $	-2 + 7	0.69	9.009 9.522	$\begin{array}{c c} -0. & 09 \\ +0. & 03 \end{array}$	+10
$egin{array}{c} m \ p \ r \end{array}$	513 518 482	$\begin{vmatrix} + .056 \\ + .077 \\077 \end{vmatrix}$	$\begin{vmatrix} + .003 \\010 \\004 \end{vmatrix}$	0.65 0.81 1.17	9.501 9.223 8.871	$\begin{bmatrix}0. & 04 \\0. & 03 \\0. & 11 \end{bmatrix}$	$0 \\ +1 \\ -7$	$0.60 \\ 0.81 \\ 1.17$	9.581 9.223 8.871	$ \begin{array}{cccc} -0. & 12 \\ -0. & 03 \\ -0. & 11 \end{array} $	$-5 \\ +4 \\ -4$
Mean			001		J.5.1	-0.042	± 0.017				± 0.017
\boldsymbol{n}	500	0.000	0.000	0.90	9.150			0.90	9.150		
n_0				9.108			9.084				

Negative 76, II.

				. `							
		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	m_0-m	Dev.
s m p r Mean	441 454 458 453 425	$\begin{array}{c c} 0.000 \\ +0.063 \\ +0.082 \\ +0.058 \\ -0.078 \end{array}$	+ .005		9.130 9.458 9.383 9.193 8.734	$\begin{array}{c cccc} +0. & 10 \\ +0. & 07 \\ +0. & 00 \\ \end{array}$	$^{+10}_{+7}_{0}_{+2}$	$0.53 \\ 0.60 \\ 0.83$	9.100 9.708 9.553 9.213 8.754	$ \begin{array}{cccc} -0. & 15 \\ -0. & 10 \\ -0. & 02 \\ +0. & 00 \end{array} $	
\overline{n}	441	0.000	0.000	1.00	9.000			1.01	8.990		
n_0			_		8	8.996			8	3.900	

Negative 76, I.

		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	Δ	m	m_0-m	Dev.	⊿	m	$ m_0-m $	Dev.
t s m	515 506 507	$\begin{array}{c c} +0.073 \\ +0.034 \\ +0.039 \\ -0.047 \end{array}$	$\begin{array}{c c} + .019 \\ + .005 \end{array}$	0.54	$9.757 \\ 9.726$		$\begin{array}{c c} + 2 \\ - 5 \end{array}$	0.60	9. 5 87 9. 4 56	1	+3
$rac{p}{r}$ Mean			— .005 —	1.12 —	8.911	-0. 15 - 0.220	$\begin{array}{c c} + 7 \\ \pm 0.024 \end{array}$	1.26 —	8.741	+0. 02 - 0.030	+5
$\frac{n}{n_0}$	498	0.000	0.000	0.83	9.260	<u> — </u>		0.94	9.090	— 	

Negative 77, I.

*****			Corr. 1. Image								
		Co	rr.		1.	lmage			2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	$ m_0-m $	Dev.
$egin{array}{c} t \\ s \\ m \\ p \\ r \end{array}$	515 513 511 515 521	+0.004 004 012 + .004 + .029	+ .010	0.55 0.73 0.84	9.744 9.434 9.244	$ \begin{array}{c cccc} -0. & 02 \\ -0. & 19 \\ +0. & 02 \\ -0. & 05 \\ -0. & 02 \end{array} $		$0.74 \\ 0.92 \\ 1.03$	8.695 9.394 9.134 8.964 8.516	$ \begin{array}{c cccc} +0. & 16 \\ +0. & 32 \\ +0. & 23 \end{array} $	-7 + 9
Mean		` —	· —			-0.052	± 0.021			+0.234	± 0.021
n	514	0.000	0.000	0.95	9.080			1.13	, 8 .83 0	-	
n_0					•	9.028				9.064	

Table 5. Continued. Negative 77, II.

		Co	Corr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	$ m_0-m $	Dev.
$egin{array}{c} t \\ s \\ m \\ p \\ r \\ ext{Mean} \end{array}$	470 459 451 450 478	+0.066 + .014 023 028 + .103	+0.010 + .009 001 008 + .005	0.79 0.87	8.794 9.297 9.224 9.036 8.542	+0. 12 +0. 26 +0. 23 +0. 16 +0. 22 +0.198	$+6 \\ +3 \\ -4 \\ +2$	0.69 0.90 0.99 1.30	8.754 9.467 9.174 9.056 8.522	$\begin{array}{c c} +0. & 14 \\ +0. & 24 \end{array}$	$-9 \\ +10$
n	456	0.000	0.000	1.03	8.960			1.04	8.950	·	
n_0			_	9.158			9.132				

Negative 81, I.

		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	$ m_0-m $	Dev.	⊿	m	$m_0 - m$	Dev.
t s m p r Mean	470 477 481 489 502	$ \begin{array}{r} -0.092 \\ -0.061 \\ -0.044 \\ -0.009 \\ +0.048 \end{array} $	+0.011 + .010 001 007 + .005	0.72 0.75 0.91	9.491	+0. 02 +0. 07 +0. 02 +0. 04 +0. 02 + 0.034	$\begin{array}{c} +4 \\ -1 \\ +1 \\ -1 \end{array}$	0.71 0.80 0.94 1.21	9.501 9.345 9.106	$\begin{array}{c} +0. & 11 \\ +0. & 09 \\ +0. & 07 \end{array}$	$ \begin{array}{r} -1 \\ -2 \\ +3 \\ +1 \\ -1 \\ \pm 0.003 \end{array} $
n	491	0.000	0.000	0.98	9.030			1.10	8.870		
$\overline{n_0}$	-			9.064			8.950				

Negative 81, II.

		Co	rr.		1.	lmage			2.	lmage	
İ	d	diam.	abs.	⊿	m	$ m_0-m $	Dev.	⊿	m	m_0 — m	Dev.
$egin{array}{c} t & s & \\ s & m & \\ p & \\ r & \\ ext{Mean} & \end{array}$	421 424 412 416 441	$\begin{array}{r r} -0.010 \\ + .005 \\056 \\035 \\ + .091 \\ - \end{array}$,	0.81 0.90 1.13	8.610 9.275 9.207 8.872 8.605	$ \begin{array}{r} +0. & 30 \\ +0. & 28 \\ +0. & 25 \\ +0. & 32 \\ +0. & 15 \\ +0.260 \end{array} $	$\begin{array}{c} + 2 \\ - 1 \\ + 6 \\ - 11 \end{array}$	0.84 0.99 1.08 1.27	9.225 9.077 8.942	+0.38	$ \begin{array}{r} + 3 \\ + 8 \\ - 5 \\ - 12 \end{array} $
n	423	0.000	0.000	1.12	8.850			1.14	8.820		
n_0				9.110			9.120				

Neg stive 82, II.

		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	$ m_0-m $	Dev.	⊿	m	$ m_0-m $	Dev.
t s m p r Mean	498 495 473 474 519	+0.035 +0.022 074 070 + .127	+0.010 + .009 + .000 007 + .002	$0.63 \\ 0.75 \\ 0.98$	9.559 9.464	$\begin{array}{c cccc} -0. & 07 \\ -0. & 00 \\ -0. & 01 \\ +0. & 09 \\ -0. & 10 \\ -0.018 \end{array}$	$\begin{array}{c} + \ 2 \\ + \ 1 \\ + 11 \\ - \ 8 \end{array}$	0.69 0 .94 1.07 1.26	8.987		$\begin{vmatrix} -8 \\ +11 \\ +3 \\ +3 \end{vmatrix}$
n	49 0	0.000	0.000	0.91	9.140			1.04	8.950		
n_0					•	0.122			(9.134	

Table 5. Gontinued. Negative 82, I.

		Co	orr.		1.]	[mage			$\overline{2}$.	Image	
	d	diam.	abs.	⊿	m	$\mid m_0 - m \mid$	Dev.	⊿	m	m_0-m	Dev.
$egin{array}{c} t \\ s \\ m \\ p \\ r \end{array}$	506 502 510 521 534	-0.058 -0.074 -0.041 $+0.004$ $+0.058$	+0.011 + .010 + .001 007 + .001	1.10 0.60 0.75 0.76 1.08	9.704 9.430 9.373	$\begin{vmatrix} 0. & 00 \\ -0. & 15 \\ +0. & 03 \\ -0. & 18 \\ -0. & 08 \end{vmatrix}$	- 10	$\begin{array}{c} 0.67 \\ 0.74 \end{array}$	9.584 9.440 9.173	$ \begin{array}{c cccc} -0. & 12 \\ -0. & 03 \\ +0. & 01 \\ +0. & 02 \\ -0. & 10 \end{array} $	
$\underline{\text{Mean}}$		<u>'</u>	<u> </u>			-0.076				-0.044	<u>+</u> 0.023
$\frac{n}{n_0}$	520	0.000	0.000	0.93 9.110 — — 9.034			9.016				

Negative 83, I.

		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	$ m_0-m $	Dev.	⊿	m	m_0-m	Dev.
$egin{array}{c} t & s & \\ m & p & \\ r & \\ ext{Mean} & \end{array}$	511 504 498 491	+0.083 + .052 + .026 004	+ .016 + .004	0.64 0.60	9.504 9.610	+0.05 -0.15	$+9 \\ -11 \\ +8$	0.45 0.56 1.13	9.894 9.690 8.840	0. 31 0. 34 0. 23 0. 08 0.240	-10 + 1 + 16
n	4 92	0.000	0.000	0.85	9.230			0.70	9.470		
n_0				9.192				9.230			

Negative 84, I.

		Co	Corr.		1.	Image			2.	Image	
	d	diam.	abs.	Δ	m	m_0-m	Dev.	⊿	m	$ m_0-m $	Dev.
t s m p r Mean	478 475 476 478 493	-0.013 027 022 013 + .053	+0.011 + .010 001 007 + .005	1.06 0.68 0.66 0.89 1.16	8.922 9.517 9.563 9.190 8.742	$ \begin{array}{cccc} +0. & 04 \\ -0. & 11 \\ +0. & 01 \end{array} $	$\begin{array}{c} +5 \\ -10 \\ +2 \\ +3 \end{array}$	$0.70 \\ 0.65 \\ 0.97$	9.583 9.070	$\begin{array}{cccc} -0. & 13 \\ +0. & 13 \end{array}$	$ \begin{array}{c} & 0 \\ & -20 \\ & +6 \\ & +7 \end{array} $
n	481	0.000	0.000	1.01	8.990			1.01	8.990		
n_0		_		8.982				9.062			

Negative 84, II.

		Co	Corr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	$ m_0-m $	Dev.	⊿	m	$ m_0-m $	Dev.
$egin{array}{c} t & s & \\ s & m & \\ p & \\ r & \\ ext{Mean} \end{array}$	448 445 431 463	+0.010 005 072 072 + .082	+0.010 + .009 .000 007 + .003	0.73	8.710 9.416 9.122 8.889 8.715	1 1	$^{+12}_{+10}_{-17}$	$0.68 \\ 0.71 \\ 1.00$	8.810 9.496 9.522 9.079 8.815	$ \begin{array}{cccc} +0. & 06 \\ -0. & 07 \\ +0. & 12 \end{array} $	-10 + 9 - 9
\overline{n}	446	0.000	0.000	1.09	8.880	·		1.03	8.960	<u> </u>	
n_0				9.086			8.992				

Table 5. Continued. Negative 85, II.

		Co	Corr.		1.	Image			2.	Image	
	d	diam.	abs.	Δ	m	$ m_0-m $	Dev.	⊿	m	m_0-m	Dev.
t s m p r Mean	487 482 468 466 499	+0.022 0.000 -0.062 -0.071 +0.075	+0.010 + .009 _0.000 007 + .002		8.778 9.321 9.292 9.248 8.753	+0. 14 +0. 24 +0. 16 -0. 05 +0. 00 + 0.098	+6 -15 -10	0.69 0.82 0.94 1.13	9.481 9.332 9.118	+0.08	$\begin{array}{c} -1 \\ +3 \\ -1 \\ -9 \end{array}$
n	482	0.000	0.000	1.04	8.950			0.97	9.050	<u> </u>	
n_0				9.048			9.136				

Negative 85, I.

	Corr.				1.	Image			2.	Image	
	d	diam.	abs.	1	178	$ m_0-m $	Dev.	⊿	m	$ m_0-m $	Dev.
t s m p r Mean	498 495 492 515 525	$ \begin{array}{r rrrr} -0.026 \\ -0.038 \\ -0.051 \\ +0.047 \\ +0.089 \end{array} $		0.70 0.65 0.81	9.498	$\begin{array}{c cccc} -0. & 04 \\ +0. & 06 \\ -0. & 15 \\ -0. & 05 \\ -0. & 10 \\ -\textbf{0.056} \end{array}$	$ \begin{array}{c} +12 \\ -9 \\ +1 \\ -4 \end{array} $	0.69 0.63 0.75 1.05	9.095 9.518 9.640 9.350 8.851	+0. 04 - 0. 18	+15 -7 -4 $+2$
$\frac{n}{n}$	504	0.000	0.000	0.83	9.260				9.150	<u> </u>	
n_0				9.204				9.038			

Negative 86, I.

		Co	rr.		1.	Image	Market Transfer		2.	Image	
	d	diam.	abs.	⊿	m	$ m_0-m $	Dev.	Δ	m	$ m_0-m $	Dev.
t s m p r Mean	506 507 498 509 520	$ \begin{array}{r} -0.017 \\ -0.013 \\ -0.050 \\ -0.004 \\ +0.042 \end{array} $	+0.013 + .012 + .002 008 002	0.47 0.53	9.144 9.911 9.838 9.552 9.160	-0.35 -0.38	$ \begin{array}{cccc} & - & 1 \\ & - & 4 \\ & - & 2 \\ & - & 6 \end{array} $	0.91	9.751 9.708	-0. 18 -0. 19 -0. 25 -0. 19 -0. 34 - 0.230	$\begin{array}{ c c c c } + 4 \\ - 2 \\ + 4 \end{array}$
n	510	0.000	0.000	0.68	9.500	· :		0.79	9.320	<u> </u>	
n_0			_	9.156				9.090			

Negative 86, II.

		Co	rr.	-	1.	Image		2. Image			
i	d	diam.	abs.	1	m	$ m_0-m $	Dev.	⊿	m	m_0-m	Dev.
t s m p r Mean	469 462 452 450 474	+0.061 + .028 019 028 + .084	+0.014 + .013 + .002 009 003	$0.56 \\ 0.72 \\ 0.79$	8.975 9.679 9.457 9.357 8.949	-0. 06 -0. 12 0. 00 -0. 16 -0. 19 -0.106	$ \begin{array}{c c} -1 \\ +11 \\ -5 \\ -8 \end{array} $	0.47 0.72 0.82 0.93	9.457 9.307	$\begin{bmatrix} -0. & 31 \\ 0. & 00 \\ -0. & 11 \end{bmatrix}$	$-14 \\ +17 \\ +6 \\ -10$
$\frac{n}{n}$	456	0.00:)	0.000	0.79	9.320			<u> </u>	9.260	<u> </u>	-
ν_0				9.214			9.086				

Table 5. Continued. Negative 88, I.

		Co	Corr.		1.]	lmage			2.	Image	
	\boldsymbol{d}	diam.	abs.	Δ	m	$ m_0-m $	Dev.	⊿	m	m_0-m	Dev.
$-\frac{1}{t}$	494	+0.035	+0.010	1.07	8.865	+0.05	+15	0.94	9.045	_0. 13	
s	494	+ .035	+.009		9.806	-0.25		0.61			
m_{\perp}	492	+ .026	002	0.58	9.656	-0.20	+ 9	0.63	9.566	-0.11	5
p	484	009	008	0.82	9.287	-0.09	·- 3	0.83		-0. 08	2
r	462	106	+ .006	1.28	8.750	+0.01	9		8.740	+0.02	+8
Mean						-0.096	± 0.029			-0.064	± 0.029
n	4 86	0.000	0.000	0.85	9.230	!		0.88	9.180	l —	
n_0					•	0.134			£	0.116	

Negative 88. II.

		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	m_0 — m	Dev.
$t \\ s \\ m \\ p \\ r$	446 442 457 473 427	$\begin{vmatrix} -0.047 \\ + .024 \\ + .099 \end{vmatrix}$	+ .009	0.88 0.89 1.07	9.218 9.147 8.819	+0.34	$+3 \\ 0 \\ +7 \\ -7$	0.90 0.86 1.01 1.46	9.189 9.187 8.899 8.553	+0. 25 +0. 37 +0. 27 +0. 30 +0. 20 + 0.278	$-1 \\ +2 \\ -8$
$\frac{\text{Mean}}{n}$	452	0.000	0.000	1.13	8.830				8.820		
n_0		_				9.137				0.098	

Negative 89, II.

	. 	Co	rr.		1.	Image		1	2.	Image	
	d	diam.	abs.	Δ	m	$m_0 - m$	Dev.	⊿	m	m_0-m	Dev.
$egin{array}{c} t \\ s \\ m \\ p \\ r \end{array}$	425 427 431 423 404			0.97 1.00 1.26	9.005 8.944 8.672	+0.51	+8 +4 +6 -9	1.12 1.19 1.46 1.63	8.805	$\begin{array}{c} +0.75 \\ +0.77 \end{array}$	$+11 \\ +11 \\ +13 \\ -20$
$\frac{\text{Mean}}{n}$	42 0	0.000	0.000	1.23	8.710	<u> </u>			8.470	<u> </u>	
n_0		<u> </u>		9.180				9.112			

Negative 89, I.

		Co	rr.		1.	mage			2.	Image	
	d	diam.	abs.	Δ	m	m_0-m	Dev.	⊿	m	$ m_0-m $	Dev.
t	513	+0.008	+0.010	1.05	8.922	0. 00	-4	1.08	8.882	+0.04	-1
8	517	+ .025	+ .009	0.65	9.526	+0.03				+0.05	0
m	50 5	025	0.000	0.80	9.325	+0.13		0.73		+0.01	4
p	491	084	007	0.95	9.171	+0.02		0.97	1	+0.05	0
r	501	042	+ .002	1.25	8.730	+0.03			8.680	+0.08	+3
Mean						+0.042	± 0.011			+ 0.046	± 0.011
\overline{n}	511	0.000	0.000	1.00	9.000		—	0.97	9.050		
n_0				9.042			9.096				

Table 5. Continued. Negative 92, I.

		Co	er.		1.	Image			2.	Image	
	d	diam.	abs.	Δ	m	$ m_0-m $	Dev.	⊿	m	m_0-m	Dev.
$egin{array}{c} t \\ s \\ m \\ p \end{array}$	500 501 500	- 0.075 + .080 + .075	$\begin{array}{c} + .021 \\ + .005 \end{array}$	0.48 0.49	9.789 9.790	-0. 23 -0. 33	— 5 —14	$0.50 \\ 0.43$	9.749 9.920	-0. 18 -0. 19 -0. 46	$^{+3}_{-24}$
$\frac{r}{ ext{Mean}}$	47 0					-0. 06 - 0.185	± 0.048		,	0.222	$+15 \\ +0.048$
n	483	0.000	0.000	0.76	9.370			0.75	9.390		
n_0		<u> </u>		9.185			9.168				

Negative 92, II.

		Co	rr.	r.					2.	Image	
	d	diam.	abs.	⊿	m	$ m_0-m $	Dev.	⊿	m	$ m_0-m $	Dev.
t s m p r	421 417 441 431 403	-0.035 055 + .065 + .015 125	+0.027 + .025 + .007 017 013	$0.60 \\ 0.70 \\ 0.91$	$9.670 \\ 9.398$	$ \begin{vmatrix} +0. & 01 \\ -0. & 11 \\ +0. & 06 \\ +0. & 05 \\ -0. & 02 \\ -0.002 \end{vmatrix} $	$ \begin{array}{r} -11 \\ + 6 \\ + 5 \\ - 2 \end{array} $	0.62 0.75 0.91 1.28	9.640 9.318	+0.05	$^{+13}_{+4}$ $^{-4}$
\overline{n}	4 28	0.000	0.000	0.94	9.090	·		0.95	9.080	·	
n_0		_		9.088				9.086			

Negative 93, 1.

		Co	rr.	1	1.	Image			2.	Image	
	d	diam.	abs.	Δ	m	m_0-m	Dev.	⊿	m	m_0-m	Dev.
t	517	+0.008				+0. 14					
$\frac{s}{m}$	$\begin{array}{c} 519 \\ 510 \end{array}$	$\begin{array}{c} + .017 \\021 \end{array}$	+ .010 001	$0.59 \\ 0.75$	9.633 9.412	$\begin{bmatrix} -0. & 08 \\ +0. & 04 \end{bmatrix}$			9.413	+0. 14	+ 5
\boldsymbol{p}	506	— .037	008	0.84	9.285	-0.09	-10	0.89	9.215		
$r \\ { m Mean}$	510		+ .006 -	1.25	8.705	+0.05 + 0.012			8.695	+0.06 +0.090	
n	515	0.000	0.000	0.93	9.110			0.99	9.020	— I	
n_0		<u> </u>		9.122				9.110			

Negative 93, 11.

		Co	orr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	$ m_0-m $	Dev.	⊿	m	$ m_0-m $	Dev.
t s m p r Mean	450 450 467 467 449	$ \begin{array}{r rrrr} -0.024 \\ -0.024 \\ +0.056 \\ +0.056 \\ -0.028 \end{array} $	+0.011 + .010 001 008 + .005	$0.79 \\ 0.97$	9.304	+ 0. 23 + 0. 25 + 0. 19 + 0. 19 + 0. 10 + 0.192	$ \begin{array}{r} +4 \\ +6 \\ 0 \\ 0 \\ -9 \\ +0.027 \end{array} $			+0. 29 +0. 37 +0. 34 +0. 42 +0. 12 + 0.308	$\begin{array}{c} + 6 \\ + 3 \\ + 11 \\ - 19 \end{array}$
\overline{n}	455	0.000	0.000	1.11	8.860			1.19	8.760		
n_0		-	_	9.052				9.068			

Table 5. Continued. Negative 96, II.

=		Co	Corr.		1.	mage			2.	Image	
	d	diam.	abs.	Δ	m	m_0-m	Dev.	⊿	m	m_0-m	Dev.
$egin{array}{c} t \\ s \\ m \\ p \end{array}$	479 474 495 492	$ \begin{array}{r} -0.095 \\ -0.087 \\ +0.004 \\ -0.008 \end{array} $	$\begin{vmatrix} + .010 \\001 \\008 \end{vmatrix}$	0.44 0.55 0.53	10.057 9.747 9.806	-0.50 -0.29 (-0.61)	$ \begin{array}{c} -12 \\ + 9 \\ (-23) \end{array} $	0.49 0.56 0.51	9.947 9.717 9.846	(-0. 65)	$\begin{vmatrix} -5 \\ +8 \\ (-31) \end{vmatrix}$
$\frac{r}{ ext{Mean}}$	459 - 494	152 - 0.000	$\begin{array}{c c} + .004 \\ - \\ \hline 0.000 \end{array}$	1.07		-0. 30 - 0.380	± 0.028		9.088 - 9.470	-0.337	
$\overline{n_0}$				9.020			9.133				

Negative 97, II.

		Co	Corr.		1.	Image	•		2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	m_0-m	Dev.
t s m p r Mean	456 458 464 462 447	$ \begin{array}{r} -0.005 \\ + .005 \\ + .033 \\ + .023 \\047 \end{array} $	+ .010 + .009 0.000 007 + .002	0.84 0.81 0.88	$9.226 \\ 9.257$	(+0. 03)	$\begin{vmatrix} +10 \\ -3 \\ (-20) \\ -2 \end{vmatrix}$	0.69 0.65 0.59 1.22	9.476 9.527 9.644	$\begin{array}{c c} +0. & 08 \\ -0. & 07 \\ \hline (-0. & 45) \end{array}$	$\begin{array}{c} + 9 \\ - 6 \\ (-44) \\ - 1 \end{array}$
$\frac{}{n}$	457	0.000	0.000	1.08	8.900				9.120		
n_0				9.130			9.110				

Negative 97, I.

		Co	Corr.		1.	mage			2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	⊿	m	m_0-m	Dev.
t	528	+0.033				-0.51				-0. 48	
s m	519 510	$\begin{bmatrix} -0.004 \\ -0.041 \end{bmatrix}$	+.009		10.095 10.061	-0. 54 - 0. 60				$\begin{bmatrix} -0. & 63 \\ -0. & 62 \end{bmatrix}$	
\boldsymbol{p}	520	0.000	007	0.49	9.877	(-0.68)	(-19)	0.52	9.817	(-0.62)	(—11)
r Mean	517 —		+.002 -	0.96	9.070	-0.31 -0.490		0.96 —	9.070 —	-0. 31 -0.510	$+20 \\ \pm 0.046$
n	520	0.000	0.000	0.59	9.660			0.64	9.570		
n_0				9.170				9.060			

Negative 98, 1.

		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	Δ	m	m_0-m	Dev.	⊿	m	m ₀ m	Dev.
t s m p r Mean	464 452 464 461 445	+0.038 028 + .038 + .014 061	+0.011 +0.010 + .001 007 0.000	0.93 0.56 0.66 0.69 1.17	9.738 9.501		$ \begin{array}{c c} -7 \\ +7 \\ (-18) \\ +2 \end{array} $	$0.63 \\ 0.72 \\ 1.25$	9.738 9.551 9.433	$ \begin{array}{c c} -0. & 09 \\ (-0. & 24) \\ +0. & 01 \end{array} $	$-9 \\ 0$
n	4 58	0.000	0.000	0.79	9.320			0.86	9.210		
n_0				9.208			9.125				

Table 5. Continued. Negative 98, II.

		Co	Corr.		1.	Image			2.	Image	
	d	diam.	abs.	Δ	m	$ m_0-m $	Dev.	⊿	m	m_0 — m	Dev.
$egin{array}{c} t \\ s \\ m \\ p \\ r \end{array}$	422 422 439 439 409	$ \begin{array}{r} -0.054 \\ -0.054 \\ +0.030 \\ +0.030 \\ -0.119 \end{array} $	$ \begin{array}{r} +0.012 \\ +0.011 \\ +0.001 \\ -0.007 \\ -0.001 \end{array} $	$0.70 \\ 0.72$	9.409 9.307	+0. 04 +0. 05 (-0.11) +0. 08	$ \begin{array}{c} -1 \\ 0 \\ (-16) \\ +3 \end{array} $	0.71 0.69 0.78 1.34	8.872 9.493 0.459 9.307 8.700	+0. 06 0. 00 (-0.11) +0. 06	$\begin{array}{c} + 2 \\ - 4 \\ (-15) \\ + 2 \end{array}$
$\frac{\text{Mean}}{n}$	-	0.000	0.000	0.98	9.030	+ 0.048			8.960	+0.042	±0.009
n_0		_		9.078			9.002				

Negative 99, I.

		Co	rr.		1.	Image			2.	Image	
	d	diam.	abs.	· ⊿	m	m_0-m	Dev.	1	m	m_0 — m	Dev.
$\begin{bmatrix} t \\ s \end{bmatrix}$	519 504	$\begin{vmatrix} +0.046 \\ -0.017 \end{vmatrix}$	+0.014 + .013					1.04	8.890	+0. 03	0
m	506 489	008 080		0.72		+0.01	-2			$\begin{vmatrix} 0.00 \\ (-0.33) \end{vmatrix}$	
$\begin{bmatrix} p \\ r \end{bmatrix}$	487	088	003		8.761		`— 3	1.32	8.701	+0.06	+3
$\frac{\text{Mean}}{n}$	508	0.000	0.000	0.92	9.120	<u> </u>			9.140	+0.030	<u>+0.011</u>
n_0		i —		9.145			9.170				

Negative 99, II.

		Co	Corr.		1.	Image			2.	Image	
	d	diam.	abs.	Δ	m	m_0 — m	Dev.	⊿	m	m_0-m	Dev.
t s m p r Mean	439 441 454 439 404	+0.025 + .035 + .097 + .025 148	+0.018 + .016 + .003 011 005	0.71	8.897 9.399 9.220 9.076 8.833	+0. 02 +0. 16 +0. 24 +0. 12 -0. 08 + 0.092	$\begin{array}{ c c } + 7 \\ +15 \\ + 3 \\ -17 \end{array}$	$0.87 \\ 1.02 \\ 1.37$	9.339 9.100 8.956	+0. 11 +0. 22 +0. 36 +0. 24 +0. 05 +0.192	$\begin{array}{ c c c } +3 \\ +17 \\ +5 \\ \end{array}$
n	434	0.000	0.000	1.06	8.920				8.870		
n_0				9.012			9.062				

Negative 100, I.

		Co	Corr.		1.	Image			2.	Image	
	d	diam.	abs.	⊿	m	m_0-m	Dev.	4	m	m_0-m	Dev.
t s m i' r Mean	539 542 540 529 514	+0.053 + .065 + .057 + .012 049	+ .021 + .005	0.43 0.43	9.642	-0. 25 -0. 36 -0. 48 -0. 45 -0. 15 - 0.338	- 2 -14 -11	0.84 0.43 0.39 0.66 1.13	9.164 9.914 10.018 9.542 8.888	-0.35 -0.13	$\begin{array}{ c c c } -3 \\ -23 \\ -2 \end{array}$
n	526	0.000	0.000	0.67	9.520			0.71	9.450		
n_0		_		9.182			9.120				

Table 5. Continued.

Negative 100, II.

·		Co	rr.		1. Image				2. Image			
	d	diam.	abs.	Δ	m	m_0-m	Dev.	⊿	m	m_0 — m	Dev.	
t s m p r Mean	479 486 498 495 456	$ \begin{array}{r rrrr} -0.044 \\013 \\ + .039 \\ + .026 \\145 \end{array} $	+0.028 + .026 + .007 017 012	$0.50 \\ 0.62$	9.256 9.967 9.804 9.601 9.057	-0. 34 -0. 41 -0. 35 -0. 41 -0. 30 -0 362	$ \begin{array}{r} -5 \\ +1 \\ -5 \end{array} $	0.47 0.48 0.60 1.07	9.897 9.844 9.631	-0. 33 -0. 34 -0. 39 -0. 44 -0. 31	+2	
n	489	0.000	0.000	0.75	9.390	<u> </u>		0.71	9.450			
n_0		_		9,028					9,088			

Negative 102. I.

		Corr.			1. Image				2. Image			
	d	diam.	abs.	△ m		m_0 — m	Dev.	⊿	m	m_0-m	Dev.	
t s m p r Mean	514 512 520 503 485	$\begin{vmatrix} +0.025 \\ + .017 \\ + .051 \\021 \\097 \end{vmatrix}$	+0.011 + .010 001 007 + .004	$0.56 \\ 0.82$	9.014 9.743 9.670 9.298 8.763	-0. 10 -0. 19 -0. 21 -0. 10 -0. 01 -0.122	$ \begin{array}{c} -7 \\ -9 \\ +2 \\ +11 \end{array} $	0.60 0.51 0.81 1.26	9.613 9.780 9.318	$ \begin{array}{rrrr} -0. & 14 \\ -0. & 06 \\ -0. & 32 \\ -0. & 12 \\ -0. & 02 \end{array} $	$ \begin{array}{r} -1 \\ +7 \\ -19 \\ +1 \\ +11 \\ +0.030 \end{array} $	
$\frac{n}{n}$	508	0.000	0.000	0.91	9.140			0.97	9.050			
n_0	-	_		9.018				8.924				

Negative 102, II.

		Co	rr.		1. Image				2. Image			
	d	d diam. abs.		Δ	m	m_0 — m	Dev.	Δ	m	m_0 — m	Dev.	
t	473	-0.078	+0.010		8.988	-0. 07	+13	1.02	9.038	- 0. 12	+ 8	
$oldsymbol{s}$	471 494	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	+ .009 0.000	$0.58 \\ 0.51$	9.758 9.817	$\begin{bmatrix} -0. & 20 \\ -0. & 36 \end{bmatrix}$	-16	0.52	9.797	-0.34	14	
$_{r}^{p}$	500 45 0	+ .039 179	007 +.003	$0.71 \\ 1.23$	9.418	$\begin{bmatrix} -0. & 22 \\ -0. & 13 \end{bmatrix}$		$0.72 \\ 1.23$	9.408 8.886	-0.21 -0.13	— 1 — 7	
Mean				_		-0.196					±0.033	
n	4 91	0.000	0.000	0.89	9.170			1.90	9.150			
n_0				8.974				8.950				

Negative 101, II.

		Co	rr.	1	1. Image				2. Image			
	d	diam.	abs.	Δ	m	m_0-m	Dev.	⊿	m	m_0-m	Dev.	
t s m p r	451 460 473 477 439	$ \begin{array}{r rrrr} -0.051 \\ -0.009 \\ +0.051 \\ +0.069 \\ -0.106 \end{array} $	+0.010 +.009 0.000 007 +.002	0.59 0.54 0.74		-0. 27 -0. 10 -0. 26 -0. 14 -0. 08	$\begin{array}{c c} + 7 \\ - 9 \\ + 3 \end{array}$	0.59 0.60 0.76		-0. 10	$+1 \\ -2 \\ 0$	
Mean						-0.170	± 0.023			-0.112		
n	4 62	0.000	0.000	0.80	9.300			0.82	9.270		-	
n_0	-			9.130				9.158				

in stellar magnitudes; these corrections are those which should be added to the magnitude of Neptune; with respect to the comparison stars these quantities represent deviations and must therefore be subtracted from the observed magnitude. For each of the two neighbouring images of 1 negative the same mean correction for diameter and absorption was adopted. Next follows, separately for the two images, Δ —the mean difference between the photographic density of the stellar image and the surrounding background of the plate, expressed in units of the microphotometer wedge; this difference is derived: for the comparison stars from 2 settings on the middle of the extrafocal image and 4 settings on different points of the background; for Neptune from 4 settings on the image and 8 points of the background. The number of the settings on the image because all measures of the background near the two neighbouring images were joined into one general mean.

The following column after Δ gives m — the magnitude of the star if it were at the same zenith distance and had the same diameter as Neptune; this quantity was found by taking from table 4 the value of m corresponding to the measured Δ and by subtracting the corrections for diameter and absorption. The next columns contain: m_0 —m or the correction which must be applied to the observed magnitude to reduce it to the mean value given in the 11th column of table 2; and the deviation of this difference from the mean difference of all comparison stars measured; a + deviation means that the star was measured brighter than on the average.

Below each column of comparison stars is given the mean difference m_0-m ; in forming the mean all stars received equal weight and no measured image was rejected whatever the deviation might be; an exception was made only for the star p on March 19, when it showed variability, as mentioned above. These rejected images of p are given in parentheses. Certain images of the comparison stars were however not measured, the reason of rejection being usually a dust-particle or any other defect on the image; a number of images of w and m could also not be used on the February photographs because they fell too near the veiled edge of the plate or were partly screened by the boundary of the field. In all cases when an image was for some reason not measured a vacant place appears in the table.

Besides the mean difference, m_0-m , its probable error is given; the p. e. was computed from all deviations of both images of the corresponding negative.

By adding the mean difference, m_0 —m, to the observed magnitude of Neptune the *concluded magnitude* of Neptune, n_0 , was obtained; the zero-point of this magnitude is evidently the same as for the scale of comparison stars in table 2.

The magnitudes of the comparison stars were derived in the following way. The observations were joined into groups according to the combinations of comparison stars used, and mean values of the magnitudes m of table 5 were determined. These groups and mean values were:

I group (December, 20 observations) star w α z i r mean m 9.423 9.068 8.822 9.704 8.725

II group (February, 23 obs.)

IIa (February, star w not measured; 6 observations)

III (22. February and March, 68 observations) star t s m p r mean m 8.919 9.555 9.454 9.190 8.764

IIIa (March 19 and occasional photographs where p was not measured; 17 observations)

All these groups include 134 observations; the remaining 11 observations were not used in the derivation of the magnitudes of the comparison stars, because they occasionally contained one or another star not measured and would therefore give too many groups with a small number of observations within each and introduce thus unnecessary complication.

Were these 11 observations also included, they would hardly alter the definitive magnitudes by a few thousandths of a stellar magnitude (of course, a more considerable shift of

the zero-point of the scale would be produced, but this is of no consequence for our purposes).

The scales of magnitude in the different groups differ by certain constant values, which must be attributed to the varying average transparency of the atmosphere, the distance from the focus and unknown circumstances of development. Therefore all these magnitudes must be reduced to a uniform zero-point—say, to the zero of the most numerous group III; then the other 4 groups require each a certain constant correction; these corrections together with the definitive magnitudes of the 9 comparison stars give together 13 unknowns which were determined from a least-square solution of the 25 equations furnished by the 25 mean magnitudes given above; the weights were assumed equal to the number of observations. In this way the definitive magnitudes contained in the 11th column of table 2 were derived.

The uniformity of the system of magnitudes adopted depends chiefly on the number of stars common to the different groups; the small groups II_a and III_a are of little importance since they refer to the same epochs as the groups II and III respectively; therefore only three chief groups shall attract our attention — the I, II and III. The December group is connected with the other two groups through the star r, and with the February group through w; all 5 stars of the March group occur also in February. Thus the February and March systems of magnitude are practically identical, and only the December group stands somewhat apart, the zero-point being based on only two stars, r and w; the uncertainty in this case however hardly exceeds 0.005 st. mg. and in any case is less than 0.01 mg.

3. Discussion of Results.

Table 6 gives the final results for Neptune. The first column gives the sidereal time corrected for light-time and change of apparent position; the latter correction corresponds to the perspective change of the central meridian of the rotating planet, and was computed as follows. From a preliminary discussion of the observational data it was obvious that the observed light variation might be accounted for by a rotation period of about 7.h8; the position of Neptune's axis of rotation was assumed according to Arthur

Newton 1): $\alpha = 19^h 17^m$; $\delta = +38^o .3$ (north pole). With these data the following corrections were found: December 18. Corr. for light-time = $-1^{m}.7$; corr. for change of position 2) = $+3.^{m0}$; total February 13. Corr. for light-time = $+1^{m}.7$; corr. for change of position = $+1^{m}.0$; total March 16. Corr. for light-time = $0^{m}.0$; corr. for change of position = $0^{m}.0$; total. $0^{m}.0$ Actually the following corrections were applied: for December 16—18 $+1^{m}.0$ February $+3^{\text{m}}.0$ 12 - 13**22** March õ 12 - 21

These corrections are small and have only a conventional character.

The second column gives the magnitude of Neptune corrected for the distance from the earth; no correction for the phase-angle was made, and the change of the distance from the sun is too insignificant to be taken into account. The correction for distance used was:

The general mean magnitude from all 145 observations results as $\overline{m}_0 = 9.101 + 0.004$ (p. e.),

with an average deviation of ± 0.0645 (or a probable dev. ± 0.0434); this is a little too large and may alone give rise to suspicions of variability. The suspicion is strengthened to conviction when the individual values from day to day are scrutinized.

The period of variation was determined in the following way. The individual values for each day were plotted and the

¹⁾ Popular Astronomy XXX p. 166.

²⁾ Allowing for the retrograde sense of rotation.

Table 6.

 $m_0 =$ magnitude of Neptune reduced to $\log \varrho = 1.467$, ϱ being the distance from the earth (zero-point of magnitudes arbitrary) t = sidereal time corrected for light-time (reduced to $\log \varrho = 1.467$) and change of apparent position.

t	$\begin{array}{c c} \mathbf{Phase of} \\ \mathbf{Rotation} \\ \mathbf{m}_0 \\ \mathbf{n} \\ \mathbf{n}_0 \\ \mathbf{n}$			nitude Light-	Curve	Dev. × 1000 ObsComp.			
	Ŭ	$P_{\rm I} = -7^{\rm h}.7269$	$P_{\text{II}} = 7^{\text{h}}.857$	I	II	super- posed I + II	I	II	I+II
1922. December 16.									
8.01	9.137	0.29	0.15	9.167	9.143	9.209	_ 30	_ 6	— 72
8 .3 0	.197	0.58	0.44	.129	.102	.130	+68	+ 95	+67
8.60	.107	0.88	0.74	.123	.102	.124	-16	+ 5	-17
8.89	.019	1.17	1.03	.091	.081	.071	~ 7 2	$\stackrel{\cdot}{-}$ 62	-52
0.00		0.55		cem					
6.8 3 7.05	$\begin{array}{c} .147 \\ .169 \end{array}$	$\begin{array}{c} 0.75 \\ 0.97 \end{array}$	$\begin{array}{c} 7.69 \\ 0.05 \end{array}$.126 .119	.130	.155	+ 21 + 50	$ \begin{array}{c} + 17 \\ + 17 \end{array} $	$\begin{array}{ccc} - & 8 \\ - & 1 \end{array}$
7.32	9.029	1.24	$0.03 \\ 0.32$.073	.108	.080	-44	-79	51
7.55	8.975	1.47	0.55	.035	.102	.036	-60	-127	- 61
7.95	9.025	1.87	0.95	.089	.083	.071	-64	-58	— 46
8.20	.137	2.12	1.20	.129	.089	.117	+8	+48	+ 20
.50 .78	.217 .107	$2.42 \\ 2.70$	1.50 1.78	.105 .101	.139 .119	.143 .119	$\begin{array}{c} +112 \\ +6 \end{array}$	$+78 \\ -12$	$+74 \\ -12$
.22	.113	$\frac{2.10}{3.14}$	2.22	.083	.047	.029		$\frac{-12}{+66}$	+84
.51	.121	3.43	$\frac{2.51}{2.51}$.110	.080	.089	+30 + 11	$^{+66}_{+41}$	+32
9.81	.118	3.73	2.81	.140	.139	.178	22	— 21	 60
10.04	.143	3.96	3.04	.155	.115	.169	-12	+ 28	-26
10.99	.073	4.91	$3.99 \\ 4.22$.119 .154	.142 $.124$.160 .177	— 46 — 49	-69 - 19	- 87 - 72
$11.22 \\ 11.44$.105 .137	$\begin{array}{c} 5.14 \\ 5.36 \end{array}$	4.22	.134	.090	.113	$\frac{-49}{+13}$	$\frac{-19}{+47}$	$\frac{-12}{+24}$
11.70	.105	5.62	4.70	.124	.078	.101	$\frac{1}{-}\frac{10}{19}$	$+\frac{1}{27}$	$+$ $\frac{1}{4}$
	'	•	1923.	Febr	uary	12.		•	·
6.28	.070	7.47	7.59	.099	.100	.098	-29	-30	 28
6.60	.097	0.06	0.05	.131	.152	.182	— 34 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	55	- 85
$\frac{6.86}{7.10}$.247	$\begin{array}{c} 0.32 \\ 0.56 \end{array}$	$\begin{array}{c} 0.31 \\ 0.55 \end{array}$.166 .130	.108 .102	.173 .131	$+81 \\ -25$	$^{+139}_{+3}$	$+74 \\ -26$
7.10 7.49	.113	0.95	0.94	.120	.084	.103	_ 23 _ 7	$\begin{array}{c} + & 3 \\ + & 29 \end{array}$	$\frac{-10}{+10}$
7.70	.079	1.16	1.15	.093	.085	.077	— 14	- 6	
7.95	.130	1.41	1.4 0	.045	.119	.063	+ 85	+ 11	$^{+67}$
8.19	.165	1.65	1.64	.046	.140	.085	+119	+ 25	$+80 \\ +6$
8.88	.075	2.34	2.33	.107	.063	.069	$\frac{.}{-}$ 32 $+$ 18	$+ \frac{12}{17}$	$+ \frac{6}{15}$
9.26 11.63	.117 .152	$\begin{array}{c} 2.72 \\ 5.09 \end{array}$	$\frac{2.71}{5.08}$.099 .160	.134 .141	.132 .200	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-17 + 11	1 5 4 8
11.84	.083	5.30	5.29	.126	.156	.181	-43	-73	-98
12.09	.140	, 5 . 55	5.54	.124	.124	.147	+ 16	+ 16	— 7
12.31	.127	5.77	5.76	.124	.070	.093	+3	+57	+ 34
12.57	.047	6.03	6.02	.078	.054	9.031	31	7	+ 16
12.86	.027 .207	$6.32 \\ 6.58$	$\begin{array}{c} 6.31 \\ 6.57 \end{array}$.033 .086	0.062 0.093	8.994 9.078	-6	-35 + 114	+33 + 129
13.12	.201	0.00	0.07	.000	,U80,	9.010	+121	7114	7129

Table 6. Continued.

•		Phase Rotat			nitude Light-			ev.×10 bsCom	
<i>t</i>	m_0	$P_{\rm I} = -7^{\rm h}.7269$	$P_{\text{II}} = -7^{\text{h}}.857$	I	II	super- posed I + II	I	II	I+II
				brua	r y 13	•			
h 6.63 6.85 7.10 7.31 7.71 7.98 8.24 8.45 9.35 9.68 11.52 11.72 11.95 12.15 12.52 12.75 12.97 13.18	9.195 .067 .057 .067 .141 9.101 8.985 9.137 .047 .187 .249 .098 .132 .017 .062 .067 .175 .119	h 0.91 1.13 1.38 1.59 1.99 2.26 2.52 2.73 3.63 3.96 5.80 6.00 6.23 6.43 6.80 7.03 7.25 7.46	h 0.51 0.73 0.98 1.19 1.59 1.86 2.12 2.33 3.23 3.56 5.40 5.60 5.83 6.03 6.40 6.63 6.85 7.06	9.122 .100 .061 .035 .119 .113 .104 .097 .125 .155 .124 .091 .034 .050 .096 .101 .094 .098	9.101 .103 .081 .088 .144 .093 .031 .063 .089 .130 .147 .102 .062 .054 .071 .098 .104	9.122 .102 .041 .022 .162 .105 .034 .059 .113 .184 .170 9.092 8.995 9.003 .066 .098 .097	$\begin{array}{c c} + 73 \\ - 33 \\ - 4 \\ + 32 \\ + 22 \\ - 12 \\ - 119 \\ + 40 \\ - 78 \\ + 32 \\ + 125 \\ + 7 \\ + 98 \\ - 33 \\ - 34 \\ - 34 \\ + 81 \\ + 21 \\ \end{array}$	$\begin{array}{c} + 94 \\ - 36 \\ - 24 \\ - 21 \\ - 3 \\ + 8 \\ - 46 \\ + 74 \\ - 42 \\ + 57 \\ + 102 \\ - 37 \\ - 9 \\ - 31 \\ + 71 \\ + 20 \end{array}$	$ \begin{array}{r} + 73 \\ - 35 \\ + 16 \\ + 45 \\ - 21 \\ - 49 \\ + 78 \\ - 66 \\ + 3 \\ + 79 \\ + 6 \\ + 137 \\ + 14 \\ - 31 \\ + 78 \\ + 23 \\ \end{array} $
			F e	brua	r y 22.				
11.25 11.47 11.70 11.92 12.18 12.39 12.63 12.86	.129 .091 .123 .099 9.011 8.915 9.055 .075	5.17 5.39 5.62 5.84 6.10 6.31 6.55 6.78	1.13 1.35 1.58 1.80 2.06 2.27 2.51 2.74	.149 .123 .124 .121 .049 .033 .083 .095	.084 .111 .143 .115 .031 .055 .080 .135	.132 .133 .166 9.135 8.969 8.987 9.062 .129	$\begin{array}{c c} -20 \\ -32 \\ -1 \\ -22 \\ -38 \\ -118 \\ -28 \\ -20 \end{array}$	$\begin{array}{c c} + 45 \\ - 20 \\ - 20 \\ - 16 \\ - 20 \\ - 140 \\ - 25 \\ - 60 \end{array}$	$\begin{array}{rrrr} - & 3 \\ - & 42 \\ - & 43 \\ - & 36 \\ + & 42 \\ - & 72 \\ - & 54 \end{array}$
			1	Marc	h 5.				
7.46 7.64 7.91 8.14	.038 .074 .168 .142	2.67 2.85 3.12 3.35	2.07 2.25 2.52 2.75	.102 .075 .080 .103	.030 .052 .086 .136	.031 .026 .065 .138	$ \begin{array}{r r} - & 64 \\ - & 1 \\ + & 88 \\ + & 39 \end{array} $	$\begin{vmatrix} + & 8 \\ + & 22 \\ - & 82 \\ + & 6 \end{vmatrix}$	$\begin{vmatrix} + & 7 \\ + & 48 \\ + & 103 \\ + & 4 \end{vmatrix}$
			N	larc i	12.				
8.05 8.28 8.54 8.78 9.12 9.34 9.62 9.85 11.77 11.97	9.069 8.955 9.115 .125 .127 .139 .039 .021 .197 .235	1.28 1.51 1.77 2.01 2.35 2.57 2.85 3.08 5.00 5.20	5.66 5.89 6.15 6.39 6.73 6.95 7.23 7.46 1.52 1.72	.069 .031 .067 .123 .107 .104 .075 .074 .142 .143	.088 .058 .054 .070 .102 .103 .084 .070 .140 .129	9.056 8.988 9.020 .092 .108 .106 .058 .043 .181 .171	$ \begin{array}{r} 0 \\ -76 \\ +48 \\ +2 \\ +35 \\ -36 \\ -53 \\ +55 \\ +92 \end{array} $	$ \begin{array}{r} -19 \\ -103 \\ +61 \\ +55 \\ +25 \\ +36 \\ -45 \\ -49 \\ +57 \\ +106 \end{array} $	$\begin{array}{r} + 13 \\ - 33 \\ + 95 \\ + 33 \\ + 19 \\ + 33 \\ - 19 \\ - 22 \\ + 16 \\ + 64 \end{array}$

Table 6. Continued.

		Ph as e Rotati			nitude 1 Light-			ev. × 10 bsCom	
t	m_0	$P_{\rm I}$ =	$P_{II} = -7^{\text{h}}.857$	I	II	super- posed I+II	I	II	1+11
			M	[arch	ı 13.				
8.23 8.45 8.72 8.95 9.36 9.58 9.84 10.14 10.50 10.76 11.00 11.21	8.987 9.067 9.091 8.997 9.053 .141 .209 .043 .161 .095 .219 .091	1 2.27 2.49 2.76 2.99 3.40 3.62 3.88 4.18 4.54 4.80 5.04 5.25	h 6.27 6.49 6.76 6.99 7.40 7.62 0.02 0.32 0.68 0.94 1.18 1.39	9.112 .104 .094 .062 .108 .124 .161 .104 .112 .114 .150 .135	9.059 .084 .103 .103 .069 .109 .152 .108 .104 .084 .088	9.070 .087 .096 .065 .076 .132 .212 .111 .115 .097 .137	$\begin{array}{r} -125 \\ -37 \\ -365 \\ -55 \\ +17 \\ +48 \\ -61 \\ +49 \\ -19 \\ +69 \\ -44 \end{array}$	$\begin{array}{ c c c c c } - & 72 \\ - & 17 \\ - & 12 \\ -106 \\ - & 16 \\ + & 32 \\ + & 57 \\ - & 65 \\ + & 57 \\ + & 11 \\ + & 131 \\ - & 26 \\ \end{array}$	$ \begin{array}{r} -83 \\ -20 \\ -5 \\ -68 \\ -23 \\ +9 \\ -3 \\ -68 \\ +46 \\ -2 \\ +82 \\ -60 \end{array} $
				Aarc]					
7.67 7.88 8.12 8.33 8.61 8.85 9.10 9.34 9.61 9.86 10.07 10.29 11.09 11.33 11.65 11.94 12.33 12.58 12.85 13.08	.134 .116 .137 .098 .180 .112 .042 .096 .024 .042 .078 .092 .080 .176 .092 .128 .185 .168 .086	4.17 4.38 4.62 4.83 5.11 5.35 5.60 5.84 6.11 6.36 6.57 6.79 7.59 0.11 0.43 0.72 1.11 1.36 1.63 1.86	6.99 7.20 7.44 7.65 0.08 0.32 0.57 0.81 1.08 1.33 1.54 1.76 2.56 2.80 3.12 3.41 3.80 4.05 4.32 4.55	.106 .102 .114 .115 .160 .124 .121 .048 .036 .085 .096 .107 .139 .150 .127 .105 .054 .042 .086	.102 .087 .069 .118 .152 .108 .102 .099 .082 .108 .141 .122 .088 .139 .099 .108 .142 .138 .110 .078	.107 .088 .082 .132 .211 .131 .125 .119 .029 .043 .125 .117 .094 .177 .148 .134 .146 .091 .051 .063	$ \begin{array}{r} + 28 \\ + 14 \\ + 23 \\ - 17 \\ + 20 \\ - 12 \\ - 82 \\ - 25 \\ - 24 \\ + 6 \\ - 27 \\ - 37 \\ - 58 \\ + 1 \\ + 80 \\ + 114 \\ + 46 \\ 0 \end{array} $	$\begin{array}{c} + 32 \\ + 29 \\ + 68 \\ - 20 \\ + 28 \\ + 60 \\ - 3 \\ - 66 \\ - 63 \\ - 30 \\ - 8 \\ + 37 \\ - 20 \\ + 43 \\ + 30 \\ + 22 \\ + 8 \end{array}$	$ \begin{vmatrix} +27 \\ +28 \\ +55 \\ -34 \\ -31 \\ -19 \\ -83 \\ -23 \\ -5 \\ -14 \\ -25 \\ -14 \\ -1 \\ -56 \\ -6 \\ +39 \\ +77 \\ +37 \\ +23 \end{vmatrix} $
				larch					
7.76 7.96 8.21 8.44 8.74 8.96 9.20 9.44 9.87 10.08	.122 .110 .052 .068 .082 .128 .082 .120 .178 .038	5.91 6.11 6.36 6.59 6.89 7.11 7.35 7.59 0.29 0.50	0.09 0.29 0.54 0.77 1.07 1.29 1.53 1.77 2.20 2.41	.114 .048 .036 .087 .099 .101 .094 .107 .167	.152 .111 .102 .101 .081 .102 .141 .120 .044 .070	.165 .058 .037 .087 .079 .102 .134 .126 .110	$\begin{vmatrix} + & 8 \\ + & 62 \\ + & 16 \\ - & 19 \\ - & 17 \\ + & 27 \\ - & 12 \\ + & 13 \\ + & 11 \\ - & 94 \end{vmatrix}$	$ \begin{vmatrix} -30 \\ -1 \\ -50 \\ -33 \\ +1 \\ +26 \\ -59 \\ 0 \\ +134 \\ -32 \end{vmatrix} $	$ \begin{array}{r} -43 \\ +52 \\ +15 \\ -19 \\ +3 \\ +26 \\ -52 \\ -6 \\ +68 \\ -63 \end{array} $

Table 6. Continued.

t	$m_{ m O}$		Phase of Rotation		nitude Light-	Curve		ev. × 10 bsCom	
	<i>m</i> ₀	$P_{I} = -7^{\text{h}}.7269$	$P_{\text{Il}} = 7^{\text{h}}.857$	I	II	super- posed I+II	I	11	I+II
			I.	Marc]	h 19.				
h		h	h	1	1	1	r .	1	I
7.85	9.172	6.82	0.61	9.097	9.103	9.099	+75	+69	+ 73
8.04	.115	7.01	0.80	.101	.100	.100	+ 14	+15	15
8.30	.020	7.27	1.06	.094	.081	.074	— 74	$\dot{}$ 61	<u>-</u> 54
8.53	.133	7.50	1.29	.101	.102	.102	+ 32	+ 31	+ 31
8.84	.130	0.08	1.60	.134	.144	.177	_ 4	— 14	— 47
9.08	.110	0.32	1.84	.166	.100	.165	— 56	+ 10	— 55
9.30	.170	0.54	2.06	.130	.031	.060	+ 40	+139	+110
9.51	.060	0.75	2.27	.126	.055	.080	— 66	+ 5	_ 20
9.84	.208	1.08	2.60	.109	.095	.103	+ 99	+113	+105
10.06	.125	1.30	2.82	.065	.139	.103	+60	— 14	+ 22
10.30	.078	1.54	3.06	.032	.110	.041	+46	— 32	+ 37
10.51	.002	1.75	3.27	.064	.090	.053	62	- 88	— 51
11.17	.145	2.41	3.93	.105	.142	.146	+40	+3	- 1
11.44	.170	2.68	4.20	.102	.127	.128	+68	+43	+42
11.71	.012	2.95	4.47	.062	.085	.046	— 50	- 73	-34
11.98	.062	3.22	4.74	.093	.084	.076	— 31	_ 22	— 14
12.36	.182	3.60	5.12	.121	.146	.166	+61	+ 36	+ 16
12.59	.120	3.83	5.35	.156	.152	.207	— 36	- 32	— 87
12.86	.028	4.10	5.62	.114	.097	.110	— 86	- 69	- 82
13.10	.088	4.34	5.86	.101	.060	.060	— 13	+28	+ 28
			M	arch	21.				
8 .24	9.018	1.12	1.85	.102	.097	9.098	I — 84	l — 79	80
8.46	8.924	1.12	2.07	.058	.030	8.987	-134	-106	— 63
8.66	8.974	1.54	$\frac{2.07}{2.27}$.032	.055	8.986	-134 -58	-81	-03 -12
8.87	8.950	1.75	2.48	.052	.076	9.039	-114	-126	-89
9.13	9.130	2.01	2.74	.123	.135	.157	+7	-120	-27
9.40	9.158	2.28	3.01	.111	.121	.121	 4 7	+37	$\frac{-27}{+27}$
0.20	3.233		5. 5-	• • • • •				, , ,,,	, ,

points joined by straight lines; in this way curves of variation for each day separately were obtained; although these curves were without doubt considerably deformed by observational errors, if separated by a 1, 2 or 3 days interval they generally presented a sufficient number of common features for the identification of their maxima and minima.

Generally a shift of the later curve by $0^{\rm h}.4-0^{\rm h}.8$ backwards per day led to very satisfactory agreement. Let us denote this shift by x; then, if P is the period, and k — an even number, we have

$$kP = 24^{h} - x$$

From a comparison of different curves it appeared that k=3 is evidently the only acceptable value; this gives

$$P = 8^{h} - \frac{x}{3}$$
, or a period near 7^h.8.

To determine more precisely the relative shifts of the different curves, copies of them made on transparent paper were superposed upon one another and shifted along the t — axis till the difference between both curves became a minimum; sometimes the same pair of curves gave two shifts with minimum deviation; in this case both shifts were noted. The results of such a comparison are given below.

$\operatorname{Dat}\epsilon$	es					\mathbf{Shift}	Remarks	\dot{x}	Weight
December	16—18	•	•	•	•	$2x = 1^{h}.42$	very good	0 ^h .71	8
February	12—13	•			•	x = 0.44	very good	0.44	2
"	»	•	•	•		x = 0.70	bad	0.70	0.5
March	12—13		•	•		x = 0.70	\mathbf{good}	0.70	1
**	16—18	•	•		•	2x = 1.48	$\mathbf{g} \mathrm{ood}$	0.74	4
**	" "	•	•	•	•	2x = 0.80	acceptable	0.40	2
**	16—19		•	•	•	3x = 1.33	\mathbf{good}	0.44	9
,,	"		•	•	•	3x = 2.60	\mathbf{good}	0 .87	9
. ***	18—19	•	•	•	•	x = 0.48	very good	0.48	1

The weight here was assumed equal to the square of the interval in days, multiplied by 2 or 1 when the coincidence was noted as "very good" or "good" respectively, and by 0.5 in the remaining cases.

From an inspection of the values of x obtained it appears that they may be divided into two distinct groups, the first with $x \ge 0^{\rm h}.70$ and the other with $x < 0^{\rm h}.5$; the weighted mean of the first group gives $x = 0^{\rm h}.78$, and the mean of the second group $-x = 0^{\rm h}.44$; these values correspond to two different periods:

$$P_{\rm I} = 7^{\rm h}.740$$
 and $P_{\rm II} = 7^{\rm h}.853$ (units of sidereal time).

With the purpose in view to decide which period is the right, and which — the wrong one, both periods were corrected by successive approximations and subjected to the test of all observations; and the surprising result was obtained that both periods correspond to a doubtlessly real variation of brightness. The most natural explanation of this result is that Neptune, like

Jupiter and Saturn, rotates not as a solid body but with different angular velocity in different zones; our bifurcation of the period of light-variation is then readily accounted for; e. g. we may suppose that the major part of the visible surface of Neprune belongs to two different zones — say, the quickly rotating equatorial zone and the slower temperate zone. With the position of Neptune's axis adopted above the angle between the line of sight and Neptune's equator during the period of observation becomes — 29°, so that practically only one of the two temperate zones could be visible; this circumstance must have added to the uniformity of the second period.

The accurate values of the periods and the light-curves were determined quite independently for both periods, on the assumption that only the period under question existed. Such a method is justified for a sufficiently long and numerous series of observations: in this case with respect to the first period the variations caused by the second may be regarded as accidental errors, and vice versa, so that the mean light-curve obtained will correspond to the period adopted, as if the other variation did not exist.

To determine each period, the phase of rotation was computed with the first approximation given above and for the three following groups of days preliminary light curves were constructed:

I. group: December 16 and 18, mean date ass. Dec. 18.

II. ": February 12—22, mean date ass. Febr. 13.

III. " : March 5—21, mean date March 16.

The relative shift of the preliminary light-curves gave the correction of the period.

For the first period ($P_I = 7^h.74$) the three light-curves showed high similarity, and gave for the correction of the period:

from the February-March groups . . . — 0^h. 016 (interval 31 days) , December-March , . . . — 0^h.0131 (, 88 ,).

The last value, being of greater weight, was adopted; this gives for the first period

 $P_{\rm I}\!=\!7^{\rm h}.7269\pm0^{\rm h}.0007~\dots~({\rm in~units~of~sidereal~time})\,;$ the probable error is roughly estimated.

As to the second period, it may be noted that our first approximation is remarkably near the value found by Maxwell Hall in 1915 1): $7^h.835$ (M. T.) = $7^h.857$ (Sid. T.); this period was therefore adopted as the first approximation, instead of our value found above ($7^h.853$). The light-curves for February and March determined with this period were similar and indicated a cor-

rection of $-0^h.003$; the two days of December, however, seem to have been chiefly under the influence of the first period, so that the comparison with the other two groups gave indeterminate results; the best correction obtained was $+0^h.002$, with an uncertainty of the same order; therefore the final value of the second period was adopted unchanged:

$$P_{\text{II}} = 7^{\text{h}}.857 \pm 0^{\text{h}}.002$$
 . . . (units of sid. time).

¹⁾ Monthly Notices 75, pp. 626-628.

The phase of rotation for each observation corresponding to the two periods found is given in the 3^d and 4th columns of table 6; the zero of phase is chosen arbitrarily (0^h, December 16).

To determine the mean light-curves for each period average values of the observed magnitude were computed for every 0^h.2 interval of the phase of rotation; if only 1 observation was found in the corresponding interval, it was joined with the near-

Table 7. Normal Points of the Light-Curve for $P_{\rm I}=7^{\rm h}.7269$.

110111111111	OTITUS	i dito i	<u> </u>	10-Out ve 101 11 1 :1200:
Phase Rotati Limits		Mean Magn.	n	Deviations × 100
$ \begin{array}{c} h & h \\ 0.00 - 0.19 \\ 0.20 - 0.39 \\ 0.40 - 0.59 \\ 0.60 - 0.79 \\ 0.80 - 0.99 \\ 1.00 - 1.19 \\ 1.20 - 1.39 \\ 1.40 - 1.59 \\ 1.60 - 1.79 \\ 1.80 - 1.99 \\ 2.00 - 2.19 \\ 2.20 - 2.39 \\ 2.40 - 2.59 \\ 2.60 - 2.79 \\ 2.80 - 2.99 \\ 3.00 - 3.19 \\ 3.20 - 3.39 \\ 3.40 - 3.59 \\ 3.60 - 3.79 \\ 3.80 - 3.99 \\ 4.00 - 4.19 \\ 4.20 - 4.39 \\ 4.30 - 4.39 \\ 4.40 - 4.79 \\ 4.80 - 4.99 \\ 5.00 - 5.19 \\ 5.20 - 5.39 \\ 5.40 - 5.79 \\ 5.80 - 5.99 \\ 6.00 - 6.19 \\ 6.20 - 6.39 \\ 6.40 - 6.59 \\ 6.60 - 6.79 \\ 6.80 - 6.99 \\ 7.00 - 7.19 \\ 7.20 - 7.39 \\ 7.40 - 7.72 \\ \end{array} $	h 0.08 0.30 0.52 0.74 0.93 1.13 1.32 1.51 1.71 1.91 2.05 2.30 2.48 2.71 2.91 3.11 3.28 3.42 3.64 3.91 4.15 4.36 4.58 4.85 5.08 5.31 5.63 5.85 6.07 6.32 6.54 6.78 6.84 7.05 7.29 7.52	9.134 .168 .120 .112 .146 .096 .062 .030 .064 .084 .131 .090 .111 .110 .031 .101 .102 .087 .122 .165 .068 .102 .149 .089 .164 .125 .107 .142 .058 .034 .085 .084 .105 .105 .103 .101 .105 .105 .107 .107 .108 .108 .108 .109 .109 .109 .109 .109 .109 .109 .109	3453466653355643224432236654555233355	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

est other interval; in this way normal points of the light-curves were obtained. Tables 7 and 8 contain the result.

The normal points from these tables were plotted and smooth curves drawn; these curves are represented on fig. 1 and 2. In drawing the curves the probable errors of the normal points were taken into account; the probable deviation of

Table 8. Normal Points of the Light-Curve for $P_{\rm II} = 7^{\rm h}.857$.

		· · · · · · · · · · · · · · · · · · ·		ight durit for 2 in the control of t
Phase Rotati Limits		Mean Magn.	n	Deviations × 100
h h 0.00—0.19 0.20—0.39 0.40—0.59 0.60—0.79 0.80—0.99 1.00—1.19 1.20—1.39 1.40—1.59 1.60—1.79 1.80—1.99 2.00—2.19 2.20—2.39 2.40—2.59 2.60—2.79 2.80—2.99 3.00—3.19 3.20—3.39 3.40—3.59 3.80—4.19 4.20—4.39 4.60—4.79 4.80—4.99 5.00—5.19 5.20—5.39 5.40—5.59 5.60—5.79 5.80—5.99 6.00—6.19 6.20—6.39 6.40—6.59 6.60—6.79 6.80—6.99 7.00—7.39 7.40—7.59 7.60—7.85	h 0.07 0.31 0.53 0.71 0.90 1.11 1.31 1.52 1.71 1.84 2.08 2.27 2.50 2.71 2.81 3.06 3.25 3.48 3.94 4.25 4.49 4.72 5.10 5.32 5.47 5.66 5.86 6.07 6.32 6.49 6.71 6.94 7.16 7.47 7.65	9.152 .108 .094 .115 .084 .080 .104 .138 .142 .082 .026 .066 .069 .134 .140 .118 .024 .158 .143 .121 .078 .084 — .167 .102 .194 .080 .058 .060 .046 .112 .095 .111 .091 .129	65656867645865342243320222433333434343	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

1 observed magnitude was computed according to the formula

$$\pm 0.674 \sqrt{\frac{\Sigma (\text{Dev.})^2}{N-\nu}}$$

where N=145 is the total number of observations, and ν — the number of normal points ($\nu=36$ for the first, and 35 for the second curve); this gave for the probable deviation from a normal magnitude the value ± 0.040 for the first, and ± 0.041 for the second curve; the first value was adopted for both curves and the probable error of 1 normal point came out as follows:

$$n = 2$$
 3 4 5 6 7 8
p. e. $= \pm 0.029 \pm 0.023 \pm 0.020 \pm 0.018 \pm 0.016 \pm 0.015 \pm 0.014$.

The probable error of each normal point is represented on the figures by arrows. The curves were smoothed so that very small oscillations within the limits of the probable error were made to disappear and certain improbably abrupt changes of brightness were softened.

The first conclusion which may be drawn from an inspection of the curves is that both periods correspond to a doubt-lessly real variation, the first within a range of 0.14 st. mg., the second — within 0.13 st. mg. The internal agreement of the normal points is somewhat better for the first curve than for the second, which is probably partly due to the circumstance that the observations are more evenly distributed over the first period. The second curve shows a curious feature: it has six approximately equidistant maxima, which may correspond on the planet to six white spots separated from one another by 60° in longitude.

The 5th and 6th columns of table 6 contain the magnitude read from the curves of fig. 1 or 2 for the corresponding phase of rotation; the 8th and 9th columns of the same table give the deviation of the observed magnitude from the values read from the curves.

If both periods are real, it is obvious that the actual variation cannot be explained by a single light-curve but must be the result of superposition of both curves; since the range of variation is very small, we may compute the magnitude resulting from superposition by simply adding the deviations from the mean magnitude caused by each curve separately. Let m_1 and

 m_2 be the magnitudes at a given moment according to curve I or II respectively, and let \overline{m} be the mean magnitude of Neptune; then $m_1-\overline{m}$ and $m_2-\overline{m}$ will represent the deviations from the mean caused by each curve separately; the total deviation will be $(m_1-\overline{m})+(m_2-\overline{m})$, and the magnitude resulting from superposition is

$$(m_1-\overline{m})+(m_2-\overline{m})+\overline{m}=m_1+m_2-\overline{m}.$$

Column 7 of table 6 gives the magnitude computed according to this formula with $\overline{m} = 9.101$, and the last column the deviation of the observed from the computed magnitude.

Table 9. Distribution of Deviations: Observation-Computation.

Dev.	Number of Deviations from							
St. Magn.	Mean Magn.	Curve I	Curve Il	Superposed I+II				
			·					
± 0.00	10	11	12	16				
.01	15	$\overline{22}$	19	16				
.02	22	$\overline{23}$	25	24				
.03	$\overline{20}$	$\frac{19}{19}$	$\frac{1}{20}$	$\frac{1}{20}$				
.04	$\frac{17}{17}$	13	13	11				
.05	6	11	5	14				
.06	9	14	17	9				
.07	9	7		13				
.08	13	9	12 5 2 3 5	12				
.09	3	4	2					
.10	5	2	3	4				
.11	13 3 5 4	3	5	3 4 1				
.12	4	9 4 2 3 6	0	0				
.13	1	1		1				
14	4 1 2 3 0	0	• 4 3	0 1 1				
.15	3	0	0	0				
.16	0	0	0	0				
.17	0	0	0	0				
18	2	0	0	Ö				
Total	145	145	145	145				
Σ (Dev.) ²	0.5989	0.4111	0.4483	0.3675				
Mean Square Dev.	i i	± 0.0534	± 0.0558	± 0.0506				

The degree of closeness by which each curve represents the observations may be estimated from the data of table 9; the considerable improvement introduced by the superposition of the two curves is obvious.

On fig. 3a and 3b the theoretical curves of variation resulting from the superposition of curves I and II are traced for each evening of observation together with the individual observed points; the theoretical curves are represented schematically, their ordinates being exact only for the very moments of observation, whereas the intermediate variation is sometimes substituted simply by a straight line; for purposes of comparison of observation with theory such a simplified treatment is quite legitim-A careful examination of the figures indicates that there is not a single day out of the 12 days of observation which does not reveal the principal features of the theoretical curve. The agreement of theory with observation would be even much closer, if on certain days — e. g. on March 21 — all observed magnitudes were changed by the same constant amount; such a correction would correspond to a variation in the sun's radiation or to changes in the general brightness of the planet produced e. g. by changes in the polar region turned towards the earth.

That real irregularities in the light-variation of Neptune have contributed to the observed deviations seems highly probable from the following. From the standpoint of accuracy of measurement the different periods of observation were not quite equivalent, the observations of March being less accurate than those of February or December; this is revealed by the behaviour of the comparison stars which in March show a greater average deviation; a possible explanation may be sought in the greater age of the plates, they being considerably more "veiled" in March than previously.

In table 5 we find for each negative separately the probable error of the mean of the system of comparison stars derived from their internal agreement; we may assume that the mean error of one measured magnitude of Neptune is proportional to this probable error; then an excess of the observed mean deviation over the expected deviation at some epoch may be regarded as a measure of changes on the light-curve itself. The following table may give some information on this subject.

Mean p. e. of the System of Comp. St. $\frac{\pm 0.018}{\pm 0.051}$ $\frac{\pm 0.021}{\pm 0.049}$ Mean sq. dev. Obs.-Comp. for Neptune $\frac{\pm 0.051}{\pm 0.055}$

December February March n 20 43 82 Mean sq. dev. of Neptune to be expected ± 0.033 ± 0.037 (± 0.049) Quadratic Excess of mean sq. dev. ± 0.039 ± 0.041 (± 0.000)

In this table the "mean square deviation to be expected" was computed on the assumption that in the March group the observed mean deviation is entirely due to accidental errors of observation; this assumption gave for the ratio (mean sq. dev.

of Neptune): (mean p. e. of comp. stars) the value $\frac{0.049}{0.027}$. From the last line of the table it appears that in December and February a variability with a mean square deviation ± 0.04 st. mg. remained unexplained by our mean curves.

Table 10 gives the average algebraic deviation of the observed brightness of Neptune from the theoretical curve; the data of this table may be of some use in the question of variability of the sun.

Table 10.

Date	19 Dec. 16	22 Dec. 18	Febr. 12	19 Febr. 13	23 Febr. 22	March 5
Average Dev. n p. e.	-0.018 -0.019	- 0.012 16 ± 0.010	+0.008 17 ± 0.009	+ 0.019 18 ± 0.009	$ \begin{array}{c c} -0.027 \\ 8 \\ \pm 0.013 \end{array} $	+0.041 4 ±0.019

Date	March 12	1923 March 12 March 13 March 16 March 18 March 19 March							
Average Dev. n p. e.	$+0.020$ 10 ± 0.012	$\begin{array}{c c} -0.016 \\ 12 \\ \pm 0.011 \end{array}$	-0.003 20 ± 0.009	$ \begin{array}{c c} -0.001 \\ 10 \\ \pm 0.012 \end{array} $	$+0.002$ 20 ± 0.009	-0.041 6 ± 0.015			

The deviations are on the average greater than should be expected from their probable errors (computed on the assumption of a p. e. $=\pm 0.038$ for a single observation; this includes accidental variations in the brightness of Neptune mentioned above); it must be remembered, however, that the result is liable to be influenced by systematic errors or variations in the light-curves.

Before concluding this section a few words must be said on a systematical source of error which could have some influ-

ence on our results. If Neptune differed much in colour from the mean colour of the comparison stars, an effect of differential absorption due to the difference in the coefficients of absorption would arise; such an effect must reveal itself chiefly at great hour-angles. To prove whether a sensible source of error of this kind existed, the mean magnitude and deviation for the 19 observations made at an hour-angle greater than 3^h were computed. The result was:

mean magnitude = 9.096 ± 0.011 or by 0.005 ± 0.011 less than the general mean; mean deviation from the theoretical curve = $+0.010 \pm 0.010$.

These values are small and entirely within the limits of the probable error and therefore the suspected effect may be neglected in the present series of observations.

4. Comparison with other Observational Series.

In the first paper there are 26 observations of sufficient accuracy, made on March 22, 23 and 24, 1922 1) which may serve as a first independent test of the results arrived at in the present investigation. The data for these observations are found in table 11.

The assumption was made that during March 1922 the light-curves corresponding to the two periods were the same as found later for the period December 1922—March 1923; although during a year's interval changes in the surface features determining the light-curve of the planet may be expected à priori, it will be shown that in the present case our assumption is excellently supported by observational evidence. With our hypothesis the only thing to be sought is a plausible correction of the periods. It was found that a correction of $+0^{\rm h}.0009$ applied to both periods led to good agreement; this correction is fairly within the range of the probable errors assigned to the periods in the preceding section, $+0^{\rm h}.0007$ and $+0^{\rm h}.0020$ respectively, and corresponds to a correction of the phase of rotation equal to 1 hour after a year's interval. The periods finally adopted were therefore:

$$P_{\text{II}} = 7^{\text{h}}.7278 + 0_{\text{m}}^{\text{h}}.0002 \ P_{\text{II}} = 7^{\text{h}}.8579 + 0^{\text{h}}.0002 \$$
 units of sidereal time.

¹⁾ T.P. 25₃, p. 33.

Table 11.

Sid. Time	Magn. Obs.	Phase of Rot. I	Magn. I —9.101	Resid. from	Phase of Rot. II	Magn. II —9.101	Resid. from II	Magn. I+II	Resid. from I+II ObsComp.
_02 1		<u> </u>	I	Mare	c h 22	, 1922.	<u> </u>		
8.5 9.0 9.2 9.5 9.8 10.2 10.6 10.8 11.1 11.5 11.7 12.0	+0.034 + .122 + .088 + .038 056 + .032 056 + .008 003 + .027 + .019	h 4.7 5.2 5.4 5.7 6.0 6.4 6.8 7.0 7.3 7.7 0.2 0.5	+ 0.013 + .042 + .023 + .023 010 063 005 .000 008 + .017 + .060 + .031	+0.021 + .080 + .065 + .015 046 + .095 057 056 + .016 020 033 012	h 3.7 4.2 4.4 4.7 5.0 5.4 5.8 6.0 6.3 6.7 6.9	+0.038 + .026 005 023 + .026 + .046 037 047 040 .000 + .003 014	$\begin{array}{r} -0.004 \\ + .096 \\ + .093 \\ + .061 \\082 \\014 \\025 \\009 \\ + .048 \\003 \\ + .024 \\ + .033 \\ \end{array}$	+0.051 + .068 + .018 .000 + .016 017 042 047 048 + .017 + .063 + .017	$\begin{array}{c} -0.017 \\ + .054 \\ + .070 \\ + .038 \\072 \\ + .049 \\020 \\009 \\ + .056 \\020 \\036 \\ + .002 \\ \end{array}$
				Mar	c h 23	, 1922.			
8.6 8.8 11.0 11.6 11.8 12.1 12.4 12.7	+ .038 + .011 + .053 056 041 034 + .013 + .017	5.8 0.3 0.9 1.1 1.4 1.7	+ .023 + .023 + .067 + .022 + .006 C54 045 + .021	+ .015 012 014 078 047 + .020 + .058 004	4.2 4.4 6.6 7.2 7.4 7.7 0.1 0.4	+ .006 005 005 014 032 + .031 + .052 + .001	$\begin{array}{r} + .032 \\ + .016 \\ + .058 \\042 \\009 \\065 \\039 \\ + .016 \end{array}$	+ .018 + .062 + .008 026 023 + .007	+ .009 007 009 064 015 011 + .006 005
						, 1922.			
8.8 9.1 9.3 9.6 9.9 10.1	001 + .050 + .023 005 060 015	$ \begin{vmatrix} 6.6 \\ 6.9 \\ 7.1 \\ 7.4 \\ 0.0 \\ 0.2 \end{vmatrix} $	013 002 .000 006 + .021 + .060	+ .012 + .052 + .023 + .001 081 075	4.8 5.1 5.3 5.6 5.9 6.1	$\begin{array}{l}009 \\ +.043 \\ +.056 \\ +.001 \\044 \\047 \end{array}$	+ .008 + .007 033 006 016 + .032	$\begin{array}{r}022 \\ + .041 \\ + .056 \\005 \\023 \\ + .013 \end{array}$	+ .021 + .009 033 .000 037 028

The phases of rotation computed with these periods are given in the 3^d and 6^{th} columns of table 11; in this computation the zero phase of rotation was assumed to take place on March 16, 1923, at $3^h.50$ for P_I , and at $0^h.68$ for P_{II} (see table 6); this date was adopted as representing the middle of the most numerous group of March observations on which our light-curves chiefly depend.

The 9th column gives the computed brightness, representing the deviation from the mean magnitude caused by the superposition of both curves; the mean algebraïc of these deviations in table 11 is not zero but equal to +0.010, which is explained by the circumstance that not the whole light-curve is represented;

the observed magnitudes in column 2 of table 11 are reduced to the same zero as those of column 9; the magnitudes of the 2^d column represent therefore the deviations given in table 18, p. 33 of T.P. 25_3 after adding to them the constant correction +0.010 st. mg.

The last column of table 11 gives the residuals: observation — computation; as may be judged from these residuals, the agreement is excellent, the mean square deviation being only ± 0.035 stellar magnitudes, corresponding to a probable error

of 1 magnitude $= \pm 0.024$ st. mg. Figure 4 illustrates the agreement between theory and observation even more clearly.

The fact of agreement which is found for the observations of March, 1922, is of especial im portance as the light-curves used were derived from an altogether different series of measures. On the other hand we arrive at the conclusion that the light-curves of Neptune may retain their general features unchanged during as long an interval as 1 year.

For purposes of testing the question of variability and period of rotation it is advisable to use only observations sufficiently

numerous and made during a relatively short interval of time—say, separated by no greater an interval than 6 months; among the different photometric measures of Neptune there are apparently only 3 old series of observation which answer these conditions:

the series of G. Müller¹) in 1884—1885, containing 72 observations, of which however a great part were made at low altitudes;

the series of measures by J. M. Baldwin²), containing 32

¹⁾ Publ. d. Astroph. Obs. zu Potsdam. B. VIII, pp. 284-287.

²⁾ Monthly Notices, 68, pp. 614-620.

observations of excellent quality, made at Potsdam between January and April 1908;

the already mentioned series by Maxwell Hall¹) on Jamaica in 1915, who found a period of rotation almost exactly coinciding with our $P_{\rm II}$.

The first two series were discussed by J. M. Baldwin²), but the period used by him, 7^h.92 (M. T.) is evidently wrong, and so we must not wonder that no variation was found. Here we shall try the applicability of the periods found in the present paper to these photometric series.

In the series of Müller it appeared safe to use only observations made not too near the horizon; therefore 16 observations with $z \geqslant 70^{\circ}$ were rejected; 4 other observations where only 1 comparison star was measured were not used either, so that there remained a total of 52 observations made at more than 20° altitude and attached to two comparison stars, the same throughout the whole series. Table 12 contains the data for these observations.

Table 12. Observations of G. Müller in 1884/85.

Date and M. T.	Observ. Magn. (Deviation) St. Mg.	Phase of P _I = =7 ^h .7067	Rotation P _{II} = -7 ^h .8363	Hand-	agn. fr Drawn		-Com	dual (
1884 Sept. 12, 11.42 " 14, 11.17 " 15, 10.83 " 17, 11.10 " 21, 10.20 " 24, 9.58 " 26, 11.18 " 30, 10.82 Oct. 29, 7.65 " 29, 9.10 " 29, 9.88 " 31, 7.78 " 31, 9.25 " 31, 10.07 " 31, 11.18	+0.18 09 07 10 + .06 14 + .02 00 + .11 02 01 + .01 + .09 06	h 3.71 5.22 5.76 0.09 2.71 4.73 0.38 3.54 2.77 4.22 5.00 4.65 6.12 6.94 0.35	h 3.58 4.32 4.47 5.72 6.78 7.64 2.38 3.99 7.22 0.84 1.62 0.50 1.97 2.79 3.90	+0.03 06 05 + .02 04 02 06 04 02 + .05 .00	07 07 04 + .01 + .03 + .05 06 + .03 02 + .02 + .02 + .09	$\begin{array}{r}11 \\01 \\ + .02 \\ .00 \\ + .06 \\02 \\ + .04 \\07 \\01 \\ + .01 \end{array}$	$ \begin{array}{r} 3 \\ -12 \\ -10 \\ +3 \\ +3 \\ +4 \\ $	$ \begin{array}{c c} -2 \\ -6 \\ +5 \\ -17 \\ -3 \\ +6 \\ +8 \\ +4 \\ 0 \\ -3 \end{array} $	$ \begin{array}{r} +12 \\ +3 \\ +4 \\ -9 \\ +4 \\ -14 \\ -4 \\ +7 \\ +5 \\ +5 \\ -6 \\ -3 \\ \end{array} $

¹⁾ Monthly Notices, 75, 626-628.

²⁾ Loc. cit.

Table 12. Continued.

										
Data and	M T	Observ. Magn.	Phase of	Rotation	Ma Hand	agn. fr Drawn	om Curve		dual (
Date and	W1. 1.	(Deviation) St. Mg.	$P_{\rm I} = -7^{\rm h}.7067$	$P_{\text{II}} = 7^{\text{h}}.8363$	I	II	super- posed 1+II	1	II	1+11
" 2, " 4, " 7, " 13, " 19, " 19, " 19, " 19, " 16, " 1885 Jan. 8, " 9, " 12, " 17, " 19, " 19, " 20, Febr. 3, " 6, " 7, " 7, " 11, " 24,	h 8.08 9.63 11.02 10.55 7.88 8.80 7.45 6.80 7.62 10.23 12.47 8.63 6.08 7.57 7.68 5.37 6.80 6.02 7.17 8.15 9.85 9.93 6.55 8.40 10.72 8.35 6.65 8.57 8.13 10.35 6.80 9.60 10.88 9.00 6.80 7.53	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h 5.83 7.38 1.07 1.48 0.57 1.49 2.78 7.41 5.80 0.70 2.94 1.95 0.28 1.77 6.50 1.30 2.73 2.83 3.98 7.61 1.60 6.08 4.46 6.31 0.92 7.14 2.34 4.26 6.46 0.97 6.01 1.10 2.38 4.02 2.70 6.29	h 1.29 2.84 4.23 4.25 2.56 3.48 3.61 5.90 1.83 4.44 6.68 0.90 6.68 0.33 7.32 0.63 2.06 1.77 2.92 5.37 7.07 1.77 7.21 1.23 3.55 1.67 6.84 0.93 1.96 4.18 1.12 3.92 5.20 5.28 3.58 2.36	$\begin{array}{c} + .07 \\02 \\02 \\02 \\02 \\02 \\02 \\02 \\02 \\ + .01 \\02 \\ + .01 \\02 \\ + .01 \\02 \\04 \\02 \\04 \\02 \\04 \\02 \\04 \\02 \\05 \\01 \\02 \\01 \\01 \\02 \\01 \\$	$\begin{array}{c} -0.07 \\ -0.07 \\ +0.03 \\ +0.01 \\ -0.07 \\ +0.01 \\ -0.01 \\ -0.01 \\ -0.01 \\ -0.02 \\ +0.02 \\ -0.03 \\ -0.03 \\ -0.04 \\ -0.04 \\ -0.05 \\$	$\begin{array}{c} -0.11 \\ + 0.17 \\ -0.08 \\ + 0.02 \\ -0.08$	++ ++++++ -++	$\begin{array}{c} + 7 \\ - 0 \\$	++++++++++++++++++++++++++++++++++++
March 10,	7.53 Mean	-0.01	3.19	1.40	 + .03	06	.02	<u> —14</u>		l

The second column of this table gives the deviation obs.—mean; this is the deviation from the mean manitude given by Müller (loc. cit.) but taken with the opposite sign, so that these deviations represent stellar magnitudes reckoned from a certain

mean magnitude; the mean of the magnitudes in the second column is not zero but equals — 0.01, which is explained by the circumstance that here not all observations of Müller were used. The 3^d and 4th columns give the phase of rotation for the two periods, reckoned from an arbitrary zero (0^h on Sept. 12, 1884); the periods adopted are those given at the beginning of this section; in units of mean time they are respectively

$$P_{\rm I} = 7^{\rm h}.7067$$
 and $P_{\rm II} = 7^{\rm h}.8363$.

The observed magnitudes were plotted on fig 5a and 5b with the phases of rotation as abscissae and curves were drawn from

hand. The first glance at these figures indicates a conspicuous variation corresponding to both periods; the range is especially great for the second period, attaining 0.18 stellar magnitudes, whereas for the first period the range is only about 0.12 st. mg.; the agreement of the individual points for $P_{\rm I}$ is also bad, which is evidently due to the disturbing influence of the more important second variation.

The 5th and 6th columns of table 12 contain the magnitude read from the hand-drawn curves on fig. 5, and the 7th column — the result of superposition of both variations, computed from

$$m_{\rm I} + m_{\rm II} + 0.01$$
,
 $m = -0.01$ being the average magnitude.

Table 13. Distribution of Residuals for Müller's Observations.

Resid.	Numb	er of R	esidua	s from
OC. st. mg.	Mean Magn.	I	II	$\begin{array}{c c} \text{super-} \\ \text{pos.} \\ I+II \end{array}$
±0.00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10 .11 .12 .13 .14 .15 .16	2954335422531210000	2 2 7 8 8 1 7 3 1 3 3 3 2 0 1 1 0 0 0 0	4 5 6 6 10 2 5 5 1 2 0 3 1 0 0 0 1 1 0 0	4 4 4 6 8 6 6 3 2 3 3 0 1 1 1 0 0 0
.17	0	0	1	0
.18 .19	1	0	0	0

 Σ (Resid.) ² | 0.2756 | 0.2333 | 0.1996 | 0.1895Mean Sq. Resid. $\pm 0.073 \pm 0.067 \pm 0.062 \pm 0.060$

The last three columns give the residuals from the I and II curves and from the superposition of these curves respectively. Table 13 gives the distribution of the residuals.

> The data of this table indicate that the observations are considerably improved by the superposition of the two vari-The light-curves ations. are of course different from those found for 1922-23.

> The observations J. M. Baldwin were treated in the same manner as those of G. Müller. Table 14 gives a summary of the observations, fig. 6a and 6b represent them graphically with curves drawn from hand.

Table 14. Observations of J. M. Baldwin.

Date and	Observ. Magn.	Phase of	Rotation		agn. fr Drawn	om n Curve		dual (
G. M. T.	from Mean)	$P_{\rm I} = -7$ h.706	$P_{II} = -7^{h}.835$	I	II .	super- posed I+II	1	II	I+II
1908 Jan. 25, 6.13 , 25, 7.10 , 25, 9.77 Febr. 3, 10.20 , 3, 11.05 , 9, 11.30 , 10, 7.40 , 10, 8.08 , 10, 9.72 , 14, 7.37 , 19, 8.70 March 2, 9.87 , 2, 10.73 , 2, 11.17 , 16, 9.12 , 16, 9.32 , 22, 9.35 , 22, 9.95 , 22, 9.95 , 24, 10.27 , 24, 10.27 , 24, 10.27 , 24, 10.78 , 25, 9.03 , 25, 10.42 , 25, 10.80 , 26, 9.00 , 26, 10.35 , 26, 10.80 , 27, 8.52 , 27, 9.32 Apr. 26, 8.47 , 28, 7.65 , 28, 8.32	$\begin{array}{c} -0.06 \\ -0.01 \\ -0.04 \\ -0.02 \\ -0.02 \\ -0.03 \\ -0.07 \\ -0.04 \\ -0.01 \\ -0.04 \\ +0.10 \\ +0.15 \\ -0.07 \\ +0.01 \\ +0.02 \\ -0.02 \\ -0.02 \\ +0.04 \\ -0.02 \\ -0.05 \\ +0.04 \\ -0.05 \\ +0.04 \\ -0.05 \\ +0.04 \\ -0.05 \\ +0.04 \\ -0.05 \\ -0.05 \\ +0.04 \\ -0.05 \\ -0.05 \\ -0.00 \\$	h 6.13 7.10 2.06 2.73 3.58 1.41 6.10 6.78 0.71 1.89 7.63 3.97 4.83 5.27 0.16 0.36 5.68 6.25 0.17 0.66 1.17 0.30 1.69 2.07 1.15 2.50 2.95 1.56 2.36 4.85 5.79 6.46	h 6.13 7.10 1.93 6.82 7.67 3.06 7.48 0.33 1.97 1.60 5.40 4.68 5.54 5.98 3.02 3.22 6.23 6.80 7.64 0.30 0.81 7.39 0.94 1.32 0.02 1.37 1.82 0.04 0.84 7.00 7.17 0.00	$\begin{array}{c} -0.03 \\ -0.01 \\ -0.01 \\ -0.02 \\ -0.02 \\ -0.03 \\ -0.03 \\ -0.03 \\ +0.06 \\ +0.07 \\ +0.03 \\ +0.03 \\ -0.03 \\ +0.04 \\ -0.01 \\ -0.03 \\ -0.04 \\ -0.01 \\ -0.03 \\ -0.04 \\ -0.01 \\ -0.03 \\ -0.04 \\ -0.01 \\ -0.03 \\ -0.04 \\ -0.01 \\ -0.03 \\ -0.03 \\ -0.04 \\ -0.01 \\ -0.03 \\$	00 02 + .03 05 01 02 01 + .09 + .07 + .09 01 01 03 01 + .03 01 + .03 01 05	$\begin{array}{c} -0.01 \\ -0.03 \\ +0.01 \\ -0.07 \\ -0.03 \\ -0.08 \\ -0.04 \\ -0.04 \\ +0.15 \\ +0.13 \\ +0.02 \\ +0.02 \\ -0.01 \\ -0.02 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51257323115353672285323405233673 ++-+++++++++++++++++++++++++++++	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

The periods adopted here are those of the preceding section; the definitive periods derived in this section would introduce but little difference in the phase of rotation.

As in the case of Müller's series, the observations of Baldwin show clearly a variation with both periods, the range being 0.14 mg. for the first, and 0.15 mg. for the second period. Thus these observations also confirm our results. Table 15 gives the

distribution of residuals for the different hypotheses. As in our observations and those of Müller, the best representation is here obtained by the superposition of the light-curves correspond-

Table 15.
Distribution of Residuals for the Observations of J. M. Baldwin.

	Number of Residuals from						
Residual St. Mg.	Mean Magn.	Curve I	Curve II	super- posed I+II			
1.0.00	1	G	1	б			
± 0.00	1	$\frac{6}{c}$	1	6			
.01	4 5 3 7 3 1 3	6 2 3 6 2	3	$\frac{6}{3}$			
.02	5	2	6	3			
.03	3	3	9	4			
.O 4	7	6	1	1			
.05	3	2	6	7			
.06	1	О	1	2			
.07	3	$\frac{0}{3}$	$\frac{1}{3}$	0			
.08	1	1	1	0			
.09	Ō	1	0	1			
.10	0 1	1	Ŏ	0			
.11	Ô	Õ	Ŏ	1			
.12	0 1	ĭ	0 0 0 0	ō			
.13	Ô		ŏ	ĭ			
.14	ĭ	0	ŏ	ō			
.15	i	ŏ	Ö	ő			
	ō	Ö	1	ő			
.16		<u> </u>					
Σ (Res.) ²	0.1150	0.0723	0.0777	0.0688			

 Σ (Res.) ² | 0.1150 | 0.0723 | 0.0777 | 0.0688 | \pm 0.061 | \pm 0.048 | \pm 0.050 | \pm 0.047

ing to the two periods.

The observations of Maxwell Hall made in also plotted 1915 were with our first period; the points so obtained were distributed at random and no curve could be traced; it appears, therefore, that the considerable oscillation observed by Maxwell Hall, which attained a range of over 0.4 magn., was entirely due to a great disturbance in the zone rotating with the second (slower) period; the small variation produced by the period was masqued by the great variation from the other.

Summary.

1. It has been shown that the light of Neptune is variable, and that its variability consists of two superposed oscillations with periods (units of mean time)

$$P_{\rm I} = 7^{\rm h}.7067 \pm 0^{\rm h}.0002$$
 and $P_{\rm II} = 7^{\rm h}.8363 \pm 0^{\rm h}.0002$ respectively;

these periods are supported by the whole observational evidence available at present, i. e.: a) by 145 photographic observations made at Tartu on 12 nights between December 1922 — March 1923, from which the character of the variation and the periods were derived; b) by 26 photographic observations made at Tartu on 3 nights in March 1922; these observations fitted perfectly into the light-curves derived from the above mentioned 145 observations, and gave a correction of the periods; c) by 52 pho

tometric observations of G. Müller in the opposition of 1884/85, all at an altitude $>20^{\circ}$; d) by 32 photometric observations of J. M. Baldwin in 1908; e) by 35 observations of Maxwell Hall in 1915, which gave only the second period. These 290 observations contain *all* existing series of accurate measures with a number of observations not less than 20 during one opposition ¹).

- 2. The variability has the only reasonable explanation in the rotation of the planet, and to Maxwell Hall belongs the priority of first determining photometrically the period of rotation of Neptune; his period found in 1915, 7h.835 is in excellent agreement with our second period of rotation.
- 3. Like Jupiter and Saturn, Neptune rotates not as a solid body, but with different angular speed in different zones: the two periods found correspond evidently to two principal zones occupying the major part of the visible hemisphere, e. g. the equatorial zone and the southern temperate zone (inclination of Neptune's equator to the line of sight $= -29^{\circ}$ during the period of observation); if the analogy between the great outer planets is drawn farther, the shorter period must correspond to the equatorial zone; the difference in the periods, $0^{\rm h}.13 = 7^{\rm m}.8$ is of the same order of magnitude as observed for Jupiter and Saturn.
- 4. The range of variation for the different series of observation was:

Appendix.

Variability of BD+17°2053.

This star used as comparison star for Neptune showed on March 19, 1923, a marked variation; for $3^1/_2$ hours it was from

¹⁾ The most numerous series of E. C. Pickering is the series of 1897/98 when 16 observations during one opposition were made; the mean error was ± 0.10 with the meridian photometer; this series was not considered here, for the small number of observations and the relatively great mean deviation would hardly give a decisive answer to the question of variability.

0.2 to 0.4 mg. below its normal brightness and rose then almost suddenly to the usual magnitude. On other days (Febr. 12, 13 and 22; March 5, 12, 13, 16, 18 and 21) no trace of a variation of such a size could be found; the 100 observations on these days covering about 25 hours of uninterrupted observation gave a mean square deviation of only ± 0.059 st. mg. The variation on March 19 is illustrated by the following table:

Sid. Time	h 7.85	8.05	8.30	8.53	8.84	9.08	9.30	9.51	9.84	10.06
Deviation of Magn. from the Mean	+0.42	+0.30	+0.23	+ 0.31	+ 0.20	+0.44	+0.19	+0.11	+0.18	+0.15
	_									
Sid. Time	10.30	10.51	11.17	11.44	11.71	11.98	12.36	12.59	12.86	13.10
Deviation of Magn. from the Mean	+0.16	+0.15	+0.28	+ 0.41	-0.03	-0.05	+0.11	+0.02	+0.05	+0.08

March 19, 1923.

Fig. 7 represents the variation graphically. The star might be taken for an Algol variable but for the strange "jumps" in

the variation which no eclipsing phenomenon can explain; the "jumps" are so great that by errors of measurement they cannot be accounted for.

The spectrum of this star is A_0 , according to the Henry Draper Catalogue.